JACOBIAN ALGEBRAS AND DEFORMATION QUANTIZATIONS

IZURU MORI

ABSTRACT. Let V be a 3-dimensional vector space over an algebraically closed field k of characteristic 0. In this paper, we study the following two classes of algebras: (1) the Jacobian algebra $J(\omega)$ of a potential $0 \neq \omega \in V^{\otimes 3}$, and (2) the algebra S_f^{λ} induced by the deformation quantization of the polynomial algebra S := S(V) = k[x, y, z] in three variables whose semi-classical limit has a quadratic unimodular Poisson bracket on S determined by $f \in S_3$. It is known that every noetherian quadratic Calabi-Yau algebra of dimension 3 is of the form $J(\omega)$, however, it is not easy to see for which potential $0 \neq \omega \in V^{\otimes 3}$, $J(\omega)$ is a Calabi-Yau algebra of dimension 3. In this paper, we try to answer this question by relating $J(\omega)$ to S_f^{λ} .

1. JACOBIAN ALGEBRAS

This is a report on a joint work in progress with S. Paul Smith. Throughout this paper, let k be an algebraically closed field of characteristic 0, and V a finite dimensional vector space over k. We denote by T(V) the tensor algebra and S(V) the symmetric algebra.

We define the action of $\theta \in \mathfrak{S}_m$ on $V^{\otimes m}$ by

$$\theta(v_1\otimes\cdots\otimes v_m):=v_{\theta(1)}\otimes\cdots\otimes v_{\theta(m)}.$$

Specializing to the *m*-cycle $\phi \in \mathfrak{S}_m$, we define

$$\phi(v_1 \otimes v_2 \otimes \cdots \otimes v_{m-1} \otimes v_m) := v_m \otimes v_1 \otimes \cdots \otimes v_{m-2} \otimes v_{m-1}.$$

We define linear maps $c, s, a: V^{\otimes m} \to V^{\otimes m}$ by

$$c(\omega) := \frac{1}{m} \sum_{i=0}^{m-1} \phi^i(\omega)$$
$$s(\omega) := \frac{1}{m!} \sum_{\theta \in \mathfrak{S}_m} \theta(\omega)$$
$$a(\omega) := \frac{1}{m!} \sum_{\theta \in \mathfrak{S}_m} (\operatorname{sgn} \theta) \theta(\omega).$$

We define the following subspaces of $V^{\otimes m}$:

$$\begin{split} \operatorname{Sym}^m V &:= \{ \omega \in V^{\otimes m} \mid \theta(\omega) = \omega \ \text{ for all } \theta \in \mathfrak{S}_m \} \\ \operatorname{Alt}^m V &:= \{ \omega \in V^{\otimes m} \mid \theta(\omega) = (\operatorname{sgn} \theta) \omega \ \text{ for all } \theta \in \mathfrak{S}_m \}. \end{split}$$

It is easy to see that $\operatorname{Sym}^m V = \operatorname{Im} s$ and $\operatorname{Alt}^m V = \operatorname{Im} a$.

The following is a key lemma in this paper.

The detailed version of this paper will be submitted for publication elsewhere.

This work was supported by Grant-in-Aid for Scientific Research (C) 22540044.

Lemma 1. Suppose that dim V = 3. For every choice of a basis x, y, z for V, Alt³ $V = k\omega_0$ where

$$\omega_0 = 2a(xyz) = c(xyz - zyx) = \frac{1}{3}(xyz + zxy + yzx - zyx - xzy - yxz).$$

By Lemma 1, we can define a linear map $\mu: V^{\otimes 3} \to k$ by the formula $a(\omega) = \mu(\omega)\omega_0$ when dim V = 3.

We define three kinds of derivatives: Choose a basis x_1, \ldots, x_n for V so that $S(V) = k[x_1, \ldots, x_n]$ and $T(V) = k\langle x_1, \ldots, x_n \rangle$. For $f \in k[x_1, \ldots, x_n]$, the usual partial derivative of f with respect to x_i is denoted by f_{x_i} . For a monomial $\omega = x_{i_1} x_{i_2} \cdots x_{i_{m-1}} x_{i_m} \in k\langle x_1, \ldots, x_n \rangle_m$ of degree m, we define

$$x_i^{-1}\omega := \begin{cases} x_{i_2}\cdots x_{i_{m-1}}x_{i_m} & \text{if } i_1 = i, \\ 0 & \text{if } i_1 \neq i, \end{cases}$$

$$\partial_{x_i}(\omega) := mx_i^{-1}c(\omega).$$

We extend the map $\partial_{x_i} : k \langle x_1, \ldots, x_n \rangle \to k \langle x_1, \ldots, x_n \rangle$ by linearity. We call ∂_{x_i} the cyclic derivative with respect to x_i .

Definition 2. The Jacobian algebra of $\omega \in k \langle x_1, \ldots, x_n \rangle$ is the algebra of the form

$$J(\omega) := k \langle x_1, \dots, x_n \rangle / (\partial_{x_1} \omega, \dots, \partial_{x_n} \omega).$$

We call ω the potential of $J(\omega)$.

It is easy to see that the Jacobian algebra is independent of the choice of a basis x_1, \ldots, x_n for V. Note that if ω is homogeneous, then $J(\omega)$ is a graded algebra. In this paper, we focus on the case that dim V = 3 and $0 \neq \omega \in V^{\otimes 3}$. In this case, $J(\omega) = T(V)/(R)$ is a quadratic algebra where $R \subset V \otimes V$.

A Calabi-Yau algebra defined below plays an important role in many branches of mathematics. For an algebra A, we denote by $A^e := A \otimes A^{op}$ the enveloping algebra of A.

Definition 3. An algebra A is called Calabi-Yau of dimension d (d-CY for short) if

- (1) A has a resolution of finite length consisting of finitely generated projective A^{e} -modules, and
- (2) $\operatorname{Ext}_{A^e}^i(A, A^e) \cong \begin{cases} A & \text{if } i = d \\ 0 & \text{if } i \neq d \end{cases}$ as A^e -modules.

Bocklandt [3] showed that every graded Calabi-Yau algebra is a Jacobian algebra. Specializing to the noetherian quadratic case, we have the following result, which is the main motivation of this paper.

Theorem 4. [3] Every noetherian quadratic Calabi-Yau algebra of dimension 3 is of the form $J(\omega)$ where dim V = 3 and $0 \neq \omega \in V^{\otimes 3}$.

By the above theorem, it is interesting to know for which potential $0 \neq \omega \in V^{\otimes 3}$, $J(\omega)$ is a Calabi-Yau algebra of dimension 3. Some criteria were given by [4], [2], however, these criteria are difficult to check in practice. The purpose of this paper is to give a more effective criterion by using geometry.

2. Deformation Quantizations

Let A be a commutative algebra.

Definition 5. A Poisson algebra is an algebra A together with a bilinear map $\{-, -\}$: $A \times A \rightarrow A$, called the Poisson bracket, satisfying the following axioms:

- (1) $\{a, b\} = -\{b, a\}$ for all $a, b \in A$.
- (2) $\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$ for all $a, b, c \in A$.
- (3) $\{a, bc\} = \{a, b\}c + b\{a, c\}$ for all $a, b, c \in A$.

Definition 6. A formal deformation of A is a k[[t]]-algebra A[[t]] with the multiplication $\varphi : A[[t]] \times A[[t]] \to A[[t]]$ of the form $\varphi = \sum_{i \in \mathbb{N}} \varphi_i t^i$ where $\varphi_0 : A \times A \to A$ is the original multiplication of A and each $\varphi_i : A \times A \to A$ is a k-bilinear map extended to be k[[t]]-bilinear.

Since A is commutative, for all $a, b \in A$, $\varphi_0(a, b) = \varphi_0(b, a)$, so

$$\varphi(a,b) - \varphi(b,a) = \sum_{i \in \mathbb{N}} \varphi_i(a,b) t^i - \sum_{i \in \mathbb{N}} \varphi_i(b,a) t^i$$
$$= \sum_{i \in \mathbb{N}} (\varphi_i(a,b) - \varphi_i(b,a)) t^i$$
$$= (\varphi_1(a,b) - \varphi_1(b,a)) t + O(t^2)$$

It is easy to see that $(A, \{-, -\}_{\varphi})$ where $\{a, b\}_{\varphi} := \varphi_1(a, b) - \varphi_1(b, a)$ for $a, b \in A$ is a Poisson algebra. We call $(A, \{-, -\}_{\varphi})$ the semi-classical limit of $(A[[t]], \varphi)$. It is not easy to see which Poisson algebra can be realized as a semi-classical limit of a formal deformation. If this is the case, we call it a deformation quantization.

Definition 7. Let $(A, \{-, -\})$ be a Poisson algebra. A formal deformation $(A[[t]], \varphi)$ of A is called a deformation quantization of $(A, \{-, -\})$ if $\{-, -\} = \{-, -\}_{\varphi}$.

We now focus on the case A = S(V). For $m \ge 2$, $S(V)_m = V^{\otimes m} / \sum_{i+j=m-2} V^i \otimes R \otimes V^j$ is the quotient space where $R = \{u \otimes v - v \otimes u \in V \otimes V \mid u, v \in V\}$. We denote the quotient map by $\overline{(-)} : V^{\otimes m} \to S(V)_m$. Since $s(\omega) = 0$ for every $\omega \in V^i \otimes R \otimes V^j$, the linear map $s : V^{\otimes m} \to V^{\otimes m}$ induces a linear map $\overline{(-)} : S(V)_m \to V^{\otimes m}$, called the symmetrization map.

Lemma 8. The linear maps $(-): V^{\otimes m} \to S(V)_m$ and $(-): S(V)_m \to V^{\otimes m}$ induce isomorphisms $(-): \operatorname{Sym}^m V \to S(V)_m$ and $(-): S(V)_m \to \operatorname{Sym}^m V$ inverses to each other.

For the rest of the paper, we assume that dim V = 3 and we write S = S(V) = k[x, y, z]. In this case, every Poisson bracket on S is uniquely determined by $\{y, z\}, \{z, x\}, \{x, y\} \in S$. A Poisson algebra $(S, \{-, -\})$ is called quadratic if $\{y, z\}, \{z, x\}, \{x, y\} \in S_2$.

Theorem 9. [5] If $(S, \{-, -\})$ is a quadratic Poisson algebra, then

$$k[[t]]\langle x, y, z \rangle / ([y, z] - t\{y, z\}, [z, x] - t\{z, x\}, [x, y] - t\{x, y\})$$

is a deformation quantization of $(S, \{-, -\})$.

For every $f \in S$,

$$\{y, z\}_f := f_x, \ \{z, x\}_f := f_y, \ \{x, y\}_f := f_z$$

defines a Poisson bracket on S. In fact, it is known that $\{-, -\}$ is a unimodular Poisson bracket on S if and only if $\{-, -\} = \{-, -\}_f$ for some $f \in S$. If $f \in S_3$, then $(S, \{-, -\}_f)$ is a quadratic Poisson algebra, so

$$k[[t]]\langle x, y, z \rangle / ([y, z] - t\tilde{f}_x, [z, x] - t\tilde{f}_y, [x, y] - t\tilde{f}_z)$$

is a deformation quantization of $(S, \{-, -\}_f)$ by Theorem 9. For $f \in S_3$ and $\lambda \in k$, we define the algebra induced by the above deformation quantization as

$$S_f^{\lambda} := k \langle x, y, z \rangle / ([y, z] - \lambda \widetilde{f}_x, [z, x] - \lambda \widetilde{f}_y, [x, y] - \lambda \widetilde{f}_z).$$

The next two results show that Jacobian algebras and deformation quantizations are strongly ralated.

Theorem 10. For every $f \in S_3$ and every $\lambda \in k$, $S_f^{\lambda} = J\left(\omega_0 - \lambda \widetilde{f}\right)$.

Theorem 11. For $J(\omega) = T(V)/(R)$ where $0 \neq \omega \in V^{\otimes 3}$ and $R \subset V \otimes V$, the following are equivalent:

(1) $J(\omega) = S_f^{\lambda}$ for some $f \in S_3, \lambda \in k$. (2) $R \cap \operatorname{Sym}^2 V = \{0\}$. (3) $R \not\subset \operatorname{Sym}^2 V$. (4) $c(\omega) \not\in \operatorname{Sym}^3 V$. (5) $a(\omega) \neq 0$. (6) $\mu(\omega) \neq 0$.

If any of the above equivalent condition holds, then $J(\omega) = S_{\overline{\omega}}^{-1/\mu(\omega)}$.

The above theorem shows that majority of Jacobian algebras are induced by deformation quantizations.

3. A CRITERION FOR THE CALABI-YAU PROPERTY

In this section, we will give a criterion for which potential $0 \neq \omega \in V^{\otimes 3}$, $J(\omega)$ is 3-CY. By the previous section, we divide into two cases (1) $a(\omega) \neq 0$ (majority), and (2) $a(\omega) = 0$ (minority).

Let $H(f) := \begin{vmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{vmatrix}$ be the Hessian of $f \in S$. Since $H(f) \in S$, we can define

 $H^{i+1}(f) := H(H^i(f))$ for every $i \in \mathbb{N}$. The classification of cubic divisors in \mathbb{P}^2 is wellknown. There are eight singular ones and one family of smooth ones (elliptic curves) up to isomorphisms. The Hessian gives a rough classification of cubic divisors in \mathbb{P}^2 .

Lemma 12. For $0 \neq f \in S_3$, the exactly one of the following occurs:

- (1) H(f) = 0. In this case, $\operatorname{Proj} S/(f)$ is either triple lines, the union of double line and a line, or the union of three lines meeting at one point.
- (2) $H(f) \neq 0$, but $H^2(f) = 0$. In this case, $\operatorname{Proj} S/(f)$ is either the union of a conic and a line meeting at one point, or a cuspidal curve.

(3) $H^i(f) \neq 0$ for every $i \in \mathbb{N}$. In this case, $\operatorname{Proj} S/(f)$ is either a triangle, the union of a conic and a line meeting at two points, a nodal curve or an elliptic curve.

Recall that $a(\omega) \neq 0$ if and only if $J(\omega) = S_f^{\lambda}$ for some $f \in S_3$ and $\lambda \in k$ by Theorem 11, so it is essential to ask which S_f^{λ} is 3-CY.

Theorem 13. Let $f \in S_3$.

- (1) If $H^2(f) = 0$, then S_f^{λ} is 3-CY for every $\lambda \in k$.
- (2) If $H^2(f) \neq 0$ and $\operatorname{Proj} S/(f)$ is singular, then S_f^{λ} is 3-CY except for exactly two values of $\lambda \in k$ for each $f \in S_3$.
- (3) If $H^2(f) \neq 0$ and $\operatorname{Proj} S/(f)$ is smooth, then S_f^{λ} is 3-CY for every $\lambda \in k$.

The above theorem shows that majority of S_f^{λ} is 3-CY. In fact, there are only three exceptions up to isomorphisms.

Theorem 14. Let $f \in S_3$ and $\lambda \in k$. If S_f^{λ} is not 3-CY, then it is isomorphic to one of the following algebras:

- $k\langle x, y, z \rangle / (yz, zx, xy)$.
- $k\langle x, y, z \rangle/(yz + x^2, zx, xy).$ $k\langle x, y, z \rangle/(yz + x^2, zx + y^2, xy).$

On the other hand, if $a(\omega) = 0$, then there are not much choice for ω (minority), so we can show the following theorem by case-by-case analysis.

Theorem 15. Let $0 \neq \omega \in V^{\otimes 3}$ such that $a(\omega) = 0$.

- (1) If $H^2(\overline{\omega}) = 0$, then $J(\omega)$ is not 3-CY.
- (2) If $H^2(\overline{\omega}) \neq 0$ and $\operatorname{Proj} S/(\overline{\omega})$ is singular, then $J(\omega)$ is 3-CY.
- (3) If $H^2(\overline{\omega}) \neq 0$ and $\operatorname{Proj} S/(\overline{\omega})$ is smooth, then $J(\omega)$ is 3-CY if and only if the *j*-invariant of Proj $S/(\overline{\omega})$ is not 0.

There are six exceptions up to isomorphisms.

Theorem 16. Let $0 \neq \omega \in V^{\otimes 3}$ such that $a(\omega) = 0$. If $J(\omega)$ is not 3-CY, then it is isomorphic to one of the following algebras:

• $k\langle x, y, z \rangle/(x^2)$. • $k\langle x, y, z \rangle/(xy + yx, x^2)$. • $k\langle x, y, z \rangle/(y^2, x^2)$. • $k\langle x, y, z \rangle/(xz + zx + y^2, xy + yx, x^2).$ • $k\langle x, y, z \rangle/(xz + zx, y^2, x^2).$ • $k\langle x, y, z \rangle/(z^2, y^2, x^2).$

These nine exceptional algebras in Theorem 14 and Theorem 16 are in one-to-one correspondence with eight singular cubics together with the elliptic curve of j-invariant 0. By [1], every noetherian quadratic Calabi-Yau algebra of dimension 3 is a domain. On the other hand, none of the nine exceptional algebras above is a domain, so we have a rather surprising result:

Theorem 17. Let $0 \neq \omega \in V^{\otimes 3}$. Then $J(\omega)$ is 3-CY if and only if it is a domain.

The point scheme is an essential ingredient to study noetherian quadratic Calabi-Yau algebras of dimension 3 in noncommutative algebraic geometry.

Theorem 18. Let $f \in S_3$ and $\lambda \in k$. If S_f^{λ} is 3-CY, then the point scheme of S_f^{λ} is given by $\operatorname{Proj} S/(24\lambda f + \lambda^3 H(f))$.

It follows that, for a generic choice of $f \in S_3$ and $\lambda \in k$, the point scheme of S_f^{λ} parameterizes 0-dimensional symplectic leaves for the unimodular Poisson structure on $\mathbb{P}^2 = \operatorname{Proj} S$ induced by f.

A few more calculations for minority show the following theorem:

Theorem 19. Let $0 \neq \omega \in V^{\otimes 3}$. If $J(\omega)$ is 3-CY, then the point scheme of $J(\omega)$ is given by $\operatorname{Proj} A/(24\mu(\omega)^2\overline{\omega} + H(\overline{\omega}))$.

4. Examples

We claim that the criterion given in this paper is effective. In fact, given $\omega \in V^{\otimes 3}$, it is routine to calculate $a(\omega)$. Moreover, given $f \in S_3$, it is routine to calculate $H^2(f)$, and it is easy to check if $\operatorname{Proj} S/(f)$ is singular or smooth because $\operatorname{Proj} S/(f)$ is singular if and only if the system of polynomial equations $f_x = f_y = f_z = 0$ has a non-trivial solution. Alternately, by sketching the curve, we can fit $\operatorname{Proj} S/(f)$ into one of the cubic divisors in the classification. Then we can see if it is singular or smooth and we can determine if $H^2(f) = 0$ or not by Lemma 12.

Example 20. If $f = x^2 z + xy^2$, then it is easy to see that $\operatorname{Proj} S/(f)$ is the union of a conic and a line meeting at one point, so $H^2(f) = 0$ by Lemma 12, hence S_f^{λ} is 3-CY for every $\lambda \in k$ by Theorem 13.

Example 21. If $f = xyz + (1/3)x^3 \in S_3$, then it is easy to see that $\operatorname{Proj} S/(f)$ is the union of a conic and a line meeting at two points, so $H^2(f) \neq 0$ by Lemma 12. Since $\operatorname{Proj} S/(f)$ is singular, S_f^{λ} is 3-CY except for exactly two values of $\lambda \in k$ by Theorem 13. These exceptional values can also be determined by a geometric condition as follows. Since

$$H(f) = \begin{vmatrix} 2x & z & y \\ z & 0 & x \\ y & x & 0 \end{vmatrix} = 2(xyz - x^3),$$

if S_f^{λ} is 3-CY, then the point scheme of S_f^{λ} is $\operatorname{Proj} S/(g)$ where

$$g = 24\lambda f + \lambda^{3} H(f) = 2\lambda \{ (12 + \lambda^{2})xyz + (4 - \lambda^{2})x^{3} \}$$

by Theorem 18. It is easy to see that

$$\operatorname{Proj} S/(g) = \begin{cases} \text{the union of a conic and a line meeting at two points} & \text{if } \lambda^2 \neq 0, -12, 4, \\ \mathbb{P}^2 & \text{if } \lambda = 0, \\ \text{a triple line} & \text{if } \lambda^2 = -12, \\ \text{a triangle} & \text{if } \lambda^2 = 4. \end{cases}$$

We can show that S_f^{λ} is 3-CY if and only if $\operatorname{Proj} S/(g)$ is not a triangle. In fact, the defining relations of S_f^{λ} are

$$[y, z] - \lambda \widetilde{f}_x = yz - zy - \lambda \left(\frac{yz + zy}{2} + x^2\right) = \frac{2 - \lambda}{2}yz - \frac{2 + \lambda}{2}zy - \lambda x^2$$
$$[z, x] - \lambda \widetilde{f}_y = zx - xz - \lambda \left(\frac{zx + xz}{2}\right) = \frac{2 - \lambda}{2}zx - \frac{2 + \lambda}{2}xz$$
$$[x, y] - \lambda \widetilde{f}_z = xy - yx - \lambda \left(\frac{xy + yx}{2}\right) = \frac{2 - \lambda}{2}yx - \frac{2 + \lambda}{2}yx,$$

so if $\lambda = \pm 2$, then S_f^{λ} is not a domain, hence it is not 3-CY.

Example 22. If $\omega = x^3 + y^3 + z^3 + (3\alpha/2)(xyz + zyx) \in V^{\otimes 3}$ where $\alpha \in k$, then it is easy to see that $a(\omega) = 0$, so we apply Theorem 15 to this example. Since $f := \overline{\omega} = x^3 + y^3 + z^3 + 3\alpha xyz \in S_3$, it is well-known that

$$\operatorname{Proj} S/(f) = \begin{cases} \text{a triangle} & \text{if } \alpha^3 = -1, \\ \text{an elliptic curve} & \text{if } \alpha^3 \neq -1, \end{cases}$$

so $H^2(f) \neq 0$ in either case by Lemma 12. If $\alpha^3 = -1$, then $\operatorname{Proj} S/(f)$ is singular, so $J(\omega)$ is 3-CY by Theorem 15. On the other hand, if $\alpha^3 \neq -1$, then $\operatorname{Proj} S/(f)$ is smooth (an elliptic curve) and the *j*-invariant of $\operatorname{Proj} S/(f)$ is given by the formula

$$\frac{\alpha^3(8-\alpha^3)}{(1+\alpha^3)^3},$$

so $J(\omega)$ is 3-CY if and only if $\alpha^3 \neq 0, 8$ by Theorem 15.

References

- M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension 3, Invent. Math., 106 (1991) 335-388.
- [2] R. Berger and A. Solotar, A criterion for homogeneous potentials to be 3-Calabi-Yau, preprint.
- [3] R. Bocklandt, Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra 212 (2008), 14–32.
- [4] R. Bocklandt, T. Schedler, and M. Wemyss, Superpotentials and higher order derivations, J. Pure Appl. Algebra 214 (2010), 1501-1522.
- J. Donin and L. Makar-Limanov, Quantization of quadratic Poisson brackets on a polynomial algebra of three variables, J. Pure Appl. Algebra 129 (1998), 247-261.

GRADUATE SCHOOL OF SCIENCE SHIZUOKA UNIVERSITY SHIZUOKA 422-8529 JAPAN *E-mail address*: simouri@ipc.shizuoka.ac.jp