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JACOBIAN ALGEBRAS AND DEFORMATION QUANTIZATIONS

IZURU MORI

Abstract. Let V be a 3-dimensional vector space over an algebraically closed field k
of characteristic 0. In this paper, we study the following two classes of algebras: (1) the
Jacobian algebra J(ω) of a potential 0 �= ω ∈ V ⊗3, and (2) the algebra Sλ

f induced by

the deformation quantization of the polynomial algebra S := S(V ) = k[x, y, z] in three
variables whose semi-classical limit has a quadratic unimodular Poisson bracket on S
determined by f ∈ S3. It is known that every noetherian quadratic Calabi-Yau algebra
of dimension 3 is of the form J(ω), however, it is not easy to see for which potential
0 �= ω ∈ V ⊗3, J(ω) is a Calabi-Yau algebra of dimension 3. In this paper, we try to
answer this question by relating J(ω) to Sλ

f .

1. Jacobian Algebras

This is a report on a joint work in progress with S. Paul Smith. Throughout this paper,
let k be an algebraically closed field of characteristic 0, and V a finite dimensional vector
space over k. We denote by T (V ) the tensor algebra and S(V ) the symmetric algebra.
We define the action of θ ∈ Sm on V ⊗m by

θ(v1 ⊗ · · · ⊗ vm) := vθ(1) ⊗ · · · ⊗ vθ(m).

Specializing to the m-cycle φ ∈ Sm, we define

φ(v1 ⊗ v2 ⊗ · · · ⊗ vm−1 ⊗ vm) := vm ⊗ v1 ⊗ · · · ⊗ vm−2 ⊗ vm−1.

We define linear maps c, s, a : V ⊗m → V ⊗m by

c(ω) :=
1

m

m−1∑
i=0

φi(ω)

s(ω) :=
1

m!

∑

θ∈Sm

θ(ω)

a(ω) :=
1

m!

∑

θ∈Sm

(sgn θ)θ(ω).

We define the following subspaces of V ⊗m:

Symm V := {ω ∈ V ⊗m | θ(ω) = ω for all θ ∈ Sm}
Altm V := {ω ∈ V ⊗m | θ(ω) = (sgn θ)ω for all θ ∈ Sm}.

It is easy to see that Symm V = Im s and Altm V = Im a.
The following is a key lemma in this paper.

The detailed version of this paper will be submitted for publication elsewhere.
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Lemma 1. Suppose that dimV = 3. For every choice of a basis x, y, z for V , Alt3 V =
kω0 where

ω0 = 2a(xyz) = c(xyz − zyx) =
1

3
(xyz + zxy + yzx− zyx− xzy − yxz).

By Lemma 1, we can define a linear map µ : V ⊗3 → k by the formula a(ω) = µ(ω)ω0

when dimV = 3.
We define three kinds of derivatives: Choose a basis x1, . . . , xn for V so that S(V ) =

k[x1, . . . , xn] and T (V ) = k〈x1, . . . , xn〉. For f ∈ k[x1, . . . , xn], the usual partial derivative
of f with respect to xi is denoted by fxi

. For a monomial ω = xi1xi2 · · · xim−1xim ∈
k〈x1, . . . , xn〉m of degree m, we define

x−1
i ω :=

{
xi2 · · · xim−1xim if i1 = i,

0 if i1 �= i,
and

∂xi
(ω) := mx−1

i c(ω).

We extend the map ∂xi
: k〈x1, . . . , xn〉 → k〈x1, . . . , xn〉 by linearity. We call ∂xi

the cyclic
derivative with respect to xi.

Definition 2. The Jacobian algebra of ω ∈ k〈x1, . . . , xn〉 is the algebra of the form

J(ω) := k〈x1, . . . , xn〉/(∂x1ω, . . . , ∂xnω).

We call ω the potential of J(ω).

It is easy to see that the Jacobian algebra is independent of the choice of a basis
x1, . . . , xn for V . Note that if ω is homogeneous, then J(ω) is a graded algebra. In
this paper, we focus on the case that dimV = 3 and 0 �= ω ∈ V ⊗3. In this case,
J(ω) = T (V )/(R) is a quadratic algebra where R ⊂ V ⊗ V .

A Calabi-Yau algebra defined below plays an important role in many branches of math-
ematics. For an algebra A, we denote by Ae := A⊗ Aop the enveloping algebra of A.

Definition 3. An algebra A is called Calabi-Yau of dimension d (d-CY for short) if

(1) A has a resolution of finite length consisting of finitely generated projective Ae-
modules, and

(2) ExtiAe(A,Ae) ∼=

{
A if i = d

0 if i �= d
as Ae-modules.

Bocklandt [3] showed that every graded Calabi-Yau algebra is a Jacobian algebra.
Specializing to the noetherian quadratic case, we have the following result, which is the
main motivation of this paper.

Theorem 4. [3] Every noetherian quadratic Calabi-Yau algebra of dimension 3 is of the
form J(ω) where dimV = 3 and 0 �= ω ∈ V ⊗3.

By the above theorem, it is interesting to know for which potential 0 �= ω ∈ V ⊗3, J(ω)
is a Calabi-Yau algebra of dimension 3. Some criteria were given by [4], [2], however,
these criteria are difficult to check in practice. The purpose of this paper is to give a more
effective criterion by using geometry.

–2–



― 124 ― ― 125 ―

2. Deformation Quantizations

Let A be a commutative algebra.

Definition 5. A Poisson algebra is an algebra A together with a bilinear map {−,−} :
A× A → A, called the Poisson bracket, satisfying the following axioms:

(1) {a, b} = −{b, a} for all a, b ∈ A.
(2) {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0 for all a, b, c ∈ A.
(3) {a, bc} = {a, b}c+ b{a, c} for all a, b, c ∈ A.

Definition 6. A formal deformation of A is a k[[t]]-algebra A[[t]] with the multiplication
ϕ : A[[t]] × A[[t]] → A[[t]] of the form ϕ =

∑
i∈N ϕit

i where ϕ0 : A × A → A is the
original multiplication of A and each ϕi : A× A → A is a k-bilinear map extended to be
k[[t]]-bilinear.

Since A is commutative, for all a, b ∈ A, ϕ0(a, b) = ϕ0(b, a), so

ϕ(a, b)− ϕ(b, a) =
∑

i∈N

ϕi(a, b)t
i −

∑

i∈N

ϕi(b, a)t
i

=
∑

i∈N

(ϕi(a, b)− ϕi(b, a))t
i

= (ϕ1(a, b)− ϕ1(b, a))t+O(t2).

It is easy to see that (A, {−,−}ϕ) where {a, b}ϕ := ϕ1(a, b) − ϕ1(b, a) for a, b ∈ A is
a Poisson algebra. We call (A, {−,−}ϕ) the semi-classical limit of (A[[t]], ϕ). It is not
easy to see which Poisson algebra can be realized as a semi-classical limit of a formal
deformation. If this is the case, we call it a deformation quantization.

Definition 7. Let (A, {−,−}) be a Poisson algebra. A formal deformation (A[[t]], ϕ) of
A is called a deformation quantization of (A, {−,−}) if {−,−} = {−,−}ϕ.

We now focus on the case A = S(V ). For m ≥ 2, S(V )m = V ⊗m/
∑

i+j=m−2 V
i⊗R⊗V j

is the quotient space where R = {u ⊗ v − v ⊗ u ∈ V ⊗ V | u, v ∈ V }. We denote the

quotient map by (−) : V ⊗m → S(V )m. Since s(ω) = 0 for every ω ∈ V i ⊗ R ⊗ V j,

the linear map s : V ⊗m → V ⊗m induces a linear map (̃−) : S(V )m → V ⊗m, called the
symmetrization map.

Lemma 8. The linear maps (−) : V ⊗m → S(V )m and (̃−) : S(V )m → V ⊗m induce

isomorphisms (−) : Symm V → S(V )m and (̃−) : S(V )m → Symm V inverses to each
other.

For the rest of the paper, we assume that dimV = 3 and we write S = S(V ) = k[x, y, z].
In this case, every Poisson bracket on S is uniquely determined by {y, z}, {z, x}, {x, y} ∈
S. A Poisson algebra (S, {−,−}) is called quadratic if {y, z}, {z, x}, {x, y} ∈ S2.

Theorem 9. [5] If (S, {−,−}) is a quadratic Poisson algebra, then

k[[t]]〈x, y, z〉/([y, z]− t{̃y, z}, [z, x]− t{̃z, x}, [x, y]− t{̃x, y})
is a deformation quantization of (S, {−,−}).
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For every f ∈ S,
{y, z}f := fx, {z, x}f := fy, {x, y}f := fz

defines a Poisson bracket on S. In fact, it is known that {−,−} is a unimodular Poisson
bracket on S if and only if {−,−} = {−,−}f for some f ∈ S. If f ∈ S3, then (S, {−,−}f )
is a quadratic Poisson algebra, so

k[[t]]〈x, y, z〉/([y, z]− tf̃x, [z, x]− tf̃y, [x, y]− tf̃z)

is a deformation quantization of (S, {−,−}f ) by Theorem 9. For f ∈ S3 and λ ∈ k, we
define the algebra induced by the above deformation quantization as

Sλ
f := k〈x, y, z〉/([y, z]− λf̃x, [z, x]− λf̃y, [x, y]− λf̃z).

The next two results show that Jacobian algebras and deformation quantizations are
strongly ralated.

Theorem 10. For every f ∈ S3 and every λ ∈ k, Sλ
f = J

(
ω0 − λf̃

)
.

Theorem 11. For J(ω) = T (V )/(R) where 0 �= ω ∈ V ⊗3 and R ⊂ V ⊗ V , the following
are equivalent:

(1) J(ω) = Sλ
f for some f ∈ S3, λ ∈ k.

(2) R ∩ Sym2 V = {0}.
(3) R �⊂ Sym2 V .
(4) c(ω) �∈ Sym3 V .
(5) a(ω) �= 0.
(6) µ(ω) �= 0.

If any of the above equivalent condition holds, then J(ω) = S
−1/µ(ω)
ω .

The above theorem shows that majority of Jacobian algebras are induced by deforma-
tion quantizations.

3. A Criterion for the Calabi-Yau Property

In this section, we will give a criterion for which potential 0 �= ω ∈ V ⊗3, J(ω) is 3-
CY. By the previous section, we divide into two cases (1) a(ω) �= 0 (majority), and (2)
a(ω) = 0 (minority).

Let H(f) :=

∣∣∣∣∣∣
fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

∣∣∣∣∣∣
be the Hessian of f ∈ S. Since H(f) ∈ S, we can define

H i+1(f) := H(H i(f)) for every i ∈ N. The classification of cubic divisors in P2 is well-
known. There are eight singular ones and one family of smooth ones (elliptic curves) up
to isomorphisms. The Hessian gives a rough classification of cubic divisors in P2.

Lemma 12. For 0 �= f ∈ S3, the exactly one of the following occurs:

(1) H(f) = 0. In this case, ProjS/(f) is either triple lines, the union of double line
and a line, or the union of three lines meeting at one point.

(2) H(f) �= 0, but H2(f) = 0. In this case, ProjS/(f) is either the union of a conic
and a line meeting at one point, or a cuspidal curve.
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(3) H i(f) �= 0 for every i ∈ N, In this case, ProjS/(f) is either a triangle, the union
of a conic and a line meeting at two points, a nodal curve or an elliptic curve.

Recall that a(ω) �= 0 if and only if J(ω) = Sλ
f for some f ∈ S3 and λ ∈ k by Theorem

11, so it is essential to ask which Sλ
f is 3-CY.

Theorem 13. Let f ∈ S3.

(1) If H2(f) = 0, then Sλ
f is 3-CY for every λ ∈ k.

(2) If H2(f) �= 0 and ProjS/(f) is singular, then Sλ
f is 3-CY except for exactly two

values of λ ∈ k for each f ∈ S3.
(3) If H2(f) �= 0 and ProjS/(f) is smooth, then Sλ

f is 3-CY for every λ ∈ k.

The above theorem shows that majority of Sλ
f is 3-CY. In fact, there are only three

exceptions up to isomorphisms.

Theorem 14. Let f ∈ S3 and λ ∈ k. If Sλ
f is not 3-CY, then it is isomorphic to one of

the following algebras:

• k〈x, y, z〉/(yz, zx, xy).
• k〈x, y, z〉/(yz + x2, zx, xy).
• k〈x, y, z〉/(yz + x2, zx+ y2, xy).

On the other hand, if a(ω) = 0, then there are not much choice for ω (minority), so we
can show the following theorem by case-by-case analysis.

Theorem 15. Let 0 �= ω ∈ V ⊗3 such that a(ω) = 0.

(1) If H2(ω) = 0, then J(ω) is not 3-CY.
(2) If H2(ω) �= 0 and ProjS/(ω) is singular, then J(ω) is 3-CY.
(3) If H2(ω) �= 0 and ProjS/(ω) is smooth, then J(ω) is 3-CY if and only if the

j-invariant of ProjS/(ω) is not 0.

There are six exceptions up to isomorphisms.

Theorem 16. Let 0 �= ω ∈ V ⊗3 such that a(ω) = 0. If J(ω) is not 3-CY, then it is
isomorphic to one of the following algebras:

• k〈x, y, z〉/(x2).
• k〈x, y, z〉/(xy + yx, x2).
• k〈x, y, z〉/(y2, x2).
• k〈x, y, z〉/(xz + zx+ y2, xy + yx, x2).
• k〈x, y, z〉/(xz + zx, y2, x2).
• k〈x, y, z〉/(z2, y2, x2).

These nine exceptional algebras in Theorem 14 and Theorem 16 are in one-to-one
correspondence with eight singular cubics together with the elliptic curve of j-invariant
0. By [1], every noetherian quadratic Calabi-Yau algebra of dimension 3 is a domain. On
the other hand, none of the nine exceptional algebras above is a domain, so we have a
rather surprising result:

Theorem 17. Let 0 �= ω ∈ V ⊗3. Then J(ω) is 3-CY if and only if it is a domain.
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The point scheme is an essential ingredient to study noetherian quadratic Calabi-Yau
algebras of dimension 3 in noncommutative algebraic geometry.

Theorem 18. Let f ∈ S3 and λ ∈ k. If Sλ
f is 3-CY, then the point scheme of Sλ

f is given

by ProjS/(24λf + λ3H(f)).

It follows that, for a generic choice of f ∈ S3 and λ ∈ k, the point scheme of Sλ
f

parameterizes 0-dimensional symplectic leaves for the unimodular Poisson structure on
P2 = ProjS induced by f .
A few more calculations for minority show the following theorem:

Theorem 19. Let 0 �= ω ∈ V ⊗3. If J(ω) is 3-CY, then the point scheme of J(ω) is given
by ProjA/(24µ(ω)2ω +H(ω)).

4. Examples

We claim that the criterion given in this paper is effective. In fact, given ω ∈ V ⊗3, it is
routine to calculate a(ω). Moreover, given f ∈ S3, it is routine to calculate H2(f), and it
is easy to check if ProjS/(f) is singular or smooth because ProjS/(f) is singular if and
only if the system of polynomial equations fx = fy = fz = 0 has a non-trivial solution.
Alternately, by sketching the curve, we can fit ProjS/(f) into one of the cubic divisors
in the classification. Then we can see if it is singular or smooth and we can determine if
H2(f) = 0 or not by Lemma 12.

Example 20. If f = x2z + xy2, then it is easy to see that ProjS/(f) is the union of a
conic and a line meeting at one point, so H2(f) = 0 by Lemma 12, hence Sλ

f is 3-CY for
every λ ∈ k by Theorem 13.

Example 21. If f = xyz + (1/3)x3 ∈ S3, then it is easy to see that ProjS/(f) is the
union of a conic and a line meeting at two points, so H2(f) �= 0 by Lemma 12. Since
ProjS/(f) is singular, Sλ

f is 3-CY except for exactly two values of λ ∈ k by Theorem
13. These exceptional values can also be determined by a geometric condition as follows.
Since

H(f) =

∣∣∣∣∣∣
2x z y
z 0 x
y x 0

∣∣∣∣∣∣
= 2(xyz − x3),

if Sλ
f is 3-CY, then the point scheme of Sλ

f is ProjS/(g) where

g = 24λf + λ3H(f) = 2λ{(12 + λ2)xyz + (4− λ2)x3}

by Theorem 18. It is easy to see that

ProjS/(g) =





the union of a conic and a line meeting at two points if λ2 �= 0,−12, 4,

P2 if λ = 0,

a triple line if λ2 = −12,

a triangle if λ2 = 4.
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We can show that Sλ
f is 3-CY if and only if ProjS/(g) is not a triangle. In fact, the

defining relations of Sλ
f are

[y, z]− λf̃x = yz − zy − λ

(
yz + zy

2
+ x2

)
=

2− λ

2
yz − 2 + λ

2
zy − λx2

[z, x]− λf̃y = zx− xz − λ

(
zx+ xz

2

)
=

2− λ

2
zx− 2 + λ

2
xz

[x, y]− λf̃z = xy − yx− λ

(
xy + yx

2

)
=

2− λ

2
yx− 2 + λ

2
yx,

so if λ = ±2, then Sλ
f is not a domain, hence it is not 3-CY.

Example 22. If ω = x3 + y3 + z3 + (3α/2)(xyz + zyx) ∈ V ⊗3 where α ∈ k, then it is
easy to see that a(ω) = 0, so we apply Theorem 15 to this example. Since f := ω =
x3 + y3 + z3 + 3αxyz ∈ S3, it is well-known that

ProjS/(f) =

{
a triangle if α3 = −1,

an elliptic curve if α3 �= −1,

so H2(f) �= 0 in either case by Lemma 12. If α3 = −1, then ProjS/(f) is singular, so
J(ω) is 3-CY by Theorem 15. On the other hand, if α3 �= −1, then ProjS/(f) is smooth
(an elliptic curve) and the j-invariant of ProjS/(f) is given by the formula

α3(8− α3)

(1 + α3)3
,

so J(ω) is 3-CY if and only if α3 �= 0, 8 by Theorem 15.

References

[1] M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension 3, Invent.
Math., 106 (1991) 335-388.

[2] R. Berger and A. Solotar, A criterion for homogeneous potentials to be 3-Calabi-Yau, preprint.
[3] R. Bocklandt, Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra 212 (2008), 14–32.
[4] R. Bocklandt, T. Schedler, and M. Wemyss, Superpotentials and higher order derivations, J. Pure

Appl. Algebra 214 (2010), 1501-1522.
[5] J. Donin and L. Makar-Limanov, Quantization of quadratic Poisson brackets on a polynomial algebra

of three variables, J. Pure Appl. Algebra 129 (1998), 247-261.

Graduate School of Science
Shizuoka University
Shizuoka 422-8529 JAPAN

E-mail address : simouri@ipc.shizuoka.ac.jp

–7–


