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ON THE HOCHSCHILD COHOMOLOGY RING MODULO
NILPOTENCE OF THE QUIVER ALGEBRA DEFINED BY c CYCLES

AND A QUANTUM-LIKE RELATION

DAIKI OBARA

Abstract. This paper is based on my talk given at the Symposium on Ring Theory and
Representation Theory held at Osaka City University, Japan, 13–15 September 2014.

In this paper, we consider the quiver algebra A over a field K defined by c cycles
and a quantum-like relation. We describe the minimal projective bimodule resolution
of A, and determine the ring structure of the Hochschild cohomology ring of A modulo
nilpotence. And we give some examples of the support variety of A-modules.

1. Introduction

LetK be a field and A an indecomposable finite dimensional algebra overK. We denote
by Ae the enveloping algebra A ⊗K Aop of A, so that left Ae-modules correspond to A-
bimodules. The n-th Hochschild cohomology group is given by HHn(A) ∼= ExtnAe(A,A)
and the Hochschild cohomology ring is given by HH∗(A) = ⊕n≥0HH

n(A,A) with Yoneda
product. Let N denote the ideal of HH∗(A) which is generated by all homogeneous
nilpotent elements. In this paper, we consider the Hochschild cohomology ring modulo
nilpotence HH∗(A)/N .

The Hochschild cohomology ring modulo nilpotence HH∗(A)/N was used in [5] to define
a support variety for any finitely generated module over a finite dimensional algebra A.
In [5], Snashall and Solberg defined the support variety V (M) of an A-module M by

V (M) = {m ∈ MaxSpecHH∗(A)/N|AnnExt∗A(M,A/radA) ⊆ m′}.

where m′ is the inverse image of m in HH∗(A).
Let c be an integer with c ≥ 2 and qi,j ∈ K nonzero elements for 1 ≤ i < j ≤ c. We

consider the quiver algebra KQ/I defined by c cycles and a quantum-like relation where

The detailed version of this paper will be submitted for publication elsewhere.
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Q is the following quiver:

e(c,sc)
ac,sc

��

e(1,2)

e(c,2) 　 e1

a1,1
��

a2,1
��

ac,1�� e(1,s1)a1,s1��

　 e(2,2)

e(2,s2)

a2,s2

��

where 1 ≤ j ≤ c and sj ≥ 2, and where I is the ideal of KQ generated by

Xni
i for 1 ≤ i ≤ c,

XiXj − qi,jXjXi for 1 ≤ i < j ≤ c.

where Xi := (
∑si

ki=1 ai,ki)
si and ni are integers with ni ≥ 2 for 1 ≤ i ≤ c.

In the case c = 2, we determined the Hochschild cohomology ring of A modulo nilpo-
tence in [2] and [3]. In the case si = 1 for 1 ≤ i ≤ c, the Hochschild cohomology ring of
A modulo nilpotence was described by Oppermann in [4]. In this paper, we describe the
minimal projective bimodule resolution of A, and determine explicitly the ring structure
of the Hochschild cohomology ring modulo nilpotence HH∗(A)/N by giving the K-basis
and the multiplication.

2. Precedent results

In this section, we introduce the precedent results about the quiver algebra A. In
the case of si = 1 for 1 ≤ i ≤ c, A is called a quantum complete intersection. In this
case, the projective bimodule resolution of A and the Hochschild cohomology ring modulo
nilpotence of A was given by Oppermann in [4] as follows.

Theorem 1. [4] In the case of si = 1 for 1 ≤ i ≤ c, the projective bimodule resolution of
A is total complex Tot(P1 ⊗ P2 ⊗ · · · ⊗ Pc) where Pi is the projective bimodule resolution
of Ai = K[αi]/(α

ni
i ):

Pi : A
e
i
1⊗x−xi⊗1←− Ae

i

∑ni−1

k=0 xk
i ⊗x

ni−1−k
i←− Ae

i
1⊗x−xi⊗1←− Ae

i ←− · · · .

Theorem 2. [4] HH∗(A)/N is isomorphic to the following finitely generated K-algebra.

K⟨yp1n1/2
1 · · · ypcnc/2

c ∈ K[y1, . . . , yc]|
∏c

j=1 q
pjnj/2
i,j = 1 for all i with pi even,

∏c
j=1 q

(pj−1)nj/2+1
i,j = −1 and ni = 2 for all i with pi odd⟩.

where qi,i = 1 and qi,j = q−1
j,i for 1 ≤ j < i ≤ c.

In the case of c = 2, we determined the Hochschild cohomology ring modulo nilpotence
HH∗(A)/N in [2] and [3] as follows.

–2–



― 132 ―

Theorem 3. Let r be an integer with r > 0. In the case of c = 2, if q1,2 is a primitive
r-th root of unity, then HH∗(A)/N is isomorphic to the polynomial ring of two variables:

HH∗(A)/N ∼=





K[x2r, y2r] if n1, n2 ̸≡ 0mod r,

K[x2, y2r] if n1 ≡ 0mod r, ni ̸≡ 0mod r,

K[x2r, y2] if n1 ̸≡ 0mod r, n2 ≡ 0mod r,

K[x2, y2] if n1, n2 ≡ 0mod r,

where xn =
∑s1

k1=1 e(1,k1), y
n =

∑s2
k2=1 e(2,k2) in HHn(A).

Theorem 4. In the case of c = 2, if q1,2 is not a root of unity, then HH∗(A)/N ∼= K.

3. Projective bimodule resolution of A

In this section, we describe the minimal projective bimodule resolution of the quiver
algebra A = KQ/I defined by c cycles and a quantum-like relation.

Let c and n be integers with c ≥ 2 and n ≥ 1. We set

Ln = {(l1, l2, . . . , lc) ∈ (N ∪ {0})c |
c∑

k=1

lk = n} for any integer n ≥ 1.

We define projective left Ae-modules, equivalently A-bimodules:

P0 = Aε00A⊕
c⨿

i=1

si⨿
ki=2

Aε0(i,ki)A and,

Qn
(l1,...,lc)

=




si⨿
ki=1

Aεn(i,ki)A if li = n for some 1 ≤ i ≤ c,

Aεn(l1,...,lc)A if li < n for all 1 ≤ i ≤ c,

for (l1, . . . , lc) ∈ Ln, where εn(l1,...,lc) = e1 ⊗ e1 and

εn(i,ki) =

{
e(i,ki) ⊗ e(i,ki) if n is even,

e(i,ki+1) ⊗ e(i,ki) if n is odd.

Then, we have the minimal projective A-bimodule resolution of A as the total complex
of the following complexes.

Lemma 5. Let n be an integer with n ≥ 1 and En
i,ki

=
∑si−1

l=0 xl
iε

n
(i,ki−l)x

si−1−l
i for 1 ≤ i ≤ c

and 0 ≤ ki ≤ si − 1. For (l1, . . . , lc) ∈ Ln, we set the integers µi by

µi =

{
ni(li − 1)/2 + 1 if li is odd,

nili/2 if li is even,
for 1 ≤ i ≤ c.

Then, we have the following complexes.
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(1) For (l1, . . . , lc) ∈ Ln such that li = n, we define the left Ae-homomorphisms
∂n
(l1,...,lc),i

: Qn
(l1,...,lc)

→ Qn−1
(l1,...,li−1,...,lc)

by

∂n
(l1,...,lc),i

: εn(i,ki) �→





εn−1
(i,ki+1)xi − xiε

n−1
(i,ki)

if n is odd,
ni−1∑
l=0

X l
iE

n−1
i,ki−1X

ni−1−l
i if n is even,

for 1 ≤ ki ≤ si.

Then, since ∂n
(l1,...,lc),i

◦ ∂n+1
(l1,...,li+1,...,lc),i

= 0, we have the complex Pi :

P0

∂1
(0,...,1,...,0),i←− Q1

(0,...,1,...,0)

∂2
(0,...,2,...,0),i←− · · ·

∂n
(0,...,n,...,0),i←− Qn

(0,...,n,...,0) ← · · · .

(2) Let m = min{i | li > 0} for (l1, . . . , lc) ∈ Ln. For m ≤ j ≤ c and (l1, . . . , lc) ∈ Ln

such that li < n−1 for 1 ≤ i ≤ c and lj ̸= 0, we define the left Ae-homomorphisms
∂n
(l1,...,lc),j

: Qn
(l1,...,lc)

→ Qn−1
(l1,...,lj−1,...,lc)

as follows:

∂n
(l1,l2,...,lc),j

: εn(l1,...,lc) �→


(−1)
∑c

k=j+1 lk
( c−j∏
h1=1

q
µj+h1
j,j+h1

εn−1
(l1,...,lj−1,...,lc)

Xj −
j−1∏
h2=1

q
µh2
h2,j

Xjε
n−1
(l1,...,lj−1,...,lc)

)

if lj is odd,

(−1)
∑c

k=j+1 lk

nj−1∑
kj=0

c−j∏
h1=1

q
µj+h1

(nj−1−kj)

j,j+h1

j−1∏
h2=1

q
µh2

kj
h2,j

X
kj
j εn−1

(l1,...,lj−1,...,lc)
X

nj−1−kj
j

if lj is even( ̸= 0).

For (l1, . . . , lc) ∈ Ln such that lm = n− 1 and lj = 1 for m ≤ j ≤ c, we define the
left Ae-homomorphisms ∂n

(l1,...,lc),j
by

∂n
(l1,...,lc),j

: εn(l1,...,lc) �→

{
En−1

m,0 Xj − qµm

m,jXjE
n−1
m,0 if n is even,

εn−1
(m,1)Xj − qµm

m,jXjε
n−1
(m,1) if n is odd,

For (l1, . . . , lc) ∈ Ln such that lm = 1 and lj = n− 1 for m ≤ j ≤ c, we define the
left Ae-homomorphisms ∂n

(l1,...,lc),j
by

∂n
(l1,...,lc),j

: εn(l1,...,lc) �→

{
En−1

j,0 Xm − q
µj

m,jXmE
n−1
j,0 if n is even,

εn−1
(j,1)Xm − q

µj

m,jXmε
n−1
(j,1) if n is odd,

Then, since ∂n
(l1,...,lc),j

◦ ∂n+1
(l1,...,lj+1,...,lc),j

= 0, for (l1, . . . , lc) ∈ Ln such that lj = 0,

we have the complex Q(l1,...,lc),j :

Qn
(l1,...,0,...,lc)

∂n+1
(l1,...,1,...,lc),j←− Qn+1

(l1,...,1,...,lc)
← · · ·

∂n+n′
(l1,...,n

′,...,lc),j←− Qn+n′

(l1,...,n′,...,lc)
← · · · .

Theorem 6. The following total complex P is the minimal projective resolution of the left
Ae-module A.

P : 0 ← A
π←− P0

d1←− P1 ← · · · dn←− Pn ← · · ·
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where π is the multiplication map and

Pn =
⨿

(l1,...,lc)∈Ln

Qn
(l1,...,lc)

and dn =
c∑

j=1

∑
(l1,...,lc)∈Ln

∂n
(l1,...,lc),j

,

for n ≥ 1, where ∂n
(l1,...,lc),j

are the Ae-homomorphisms given in Lemma 5.

Now we consider the complex P ⊗A A/radA. We can prove that P is exact, by the
following Lemma.

Lemma 7. [1] If P ⊗A A/radA is exact sequence then P is also exact sequence.

We can prove that P⊗AA/radA is exact, that is dimk Im dn⊗AidA/radA+dimk Im dn+1⊗A

idA/radA = dimk Pn ⊗A A/radA by the following Lemma.

Lemma 8. Let (l1, . . . , lc) ∈ Ln such that li < n−1 for 1 ≤ i ≤ c, and m = min{i |li > 0}
for (l1, . . . , lc) ∈ Ln.

(1) If lm is even, then the left A-module AXmdn ⊗A idA/radA(e
n
(l1,...,lc)

) is generated by

dn ⊗A idA/radA(e
n
(l1,...,lm+1,...,lj−1,...,lc)) for m+ 1 ≤ j ≤ c such that lj ̸= 0.

(2) If lm is odd, then the left A-module AXnm−1
m

�dn(e(l1,...,lc)) is generated by

dn ⊗A idA/radA(e
n
(l1,...,lm+1,...,lj−1,...,lc)) for m+ 1 ≤ j ≤ c such that lj ̸= 0.

(3) For 1 ≤ i ≤ m− 1, the left A-module AXi
�dn(en(l1,...,lc)) is generated by

dn ⊗A idA/radA(e
n
(l1,...,li+1,...,lj−1,...,lc)) for m+ 1 ≤ j ≤ c such that lj ̸= 0.

4. The Hochschild cohomology ring modulo nilpotence

In this section, we give a K-basis of the Hochschild cohomology ring modulo nilpotence.
Applying the functor HomAe(−, A) to the Ae-projective resolution P given in Theorem 6,
we have the following complex:

P∗ : 0 → P ∗
0

d∗1−→ P ∗
1 → · · · → P ∗

n−1

d∗n−→ P ∗
n → · · · ,

where

P ∗
n =

⨿
(l1,...,lc)∈Ln

HomAe(Qn
(l1,...,lc)

, A) and d∗n =
c∑

i=1

∑
(l1,...,lc)∈Ln

HomAe(∂n
(l1,...,lc),i

, A),

for n ≥ 1. Then we have the following isomorphisms:

P ∗
0 = HomAe(P0, A) ≃ e1Ae

0
0 ⊕

c⨿
i=1

si⨿
ki=2

ei,kiAe
0
(i,ki)

,

HomAe(Qn
(l1,...,lc)

, A) ≃




si⨿
ki=1

e(i,ki)Ae
n
(i,ki)

if n is even and li = n,

si⨿
ki=1

e(i,ki+1)Ae
n
(i,ki)

if n is odd and li = n,

e1Ae
n
(l1,...,lc)

if li < n for 1 ≤ i ≤ c,
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for (l1, . . . , lc) ∈ Ln. Since we give the Hochschild cohomology ring modulo nilpotence, we
only consider the elements, which are trivial passes in A, in HHn(A) = Ker d∗n+1/Im d∗n.
Now, we give the image of en(l1,...,lc) in P ∗

n by ∂n+1∗
(l1,...,lj+1,...,lc),j

for (l1, . . . , lj+1, . . . , lc) ∈ Ln+1

and 1 ≤ j ≤ c.

HomAe(∂n+1
(l1,...,lj+1,...,lc),j

, A) :



en(i,ki) �→ xie
n+1
(i,ki−1) − xie

n+1
(i,ki)

for 1 ≤ ki ≤ si if n is even, li = n and i = j,

en(i,1) �→ (1− qµi

i,j)Xje
n+1
(l1,...,lj+1,...,lc)

if li = n and i < j,

en(i,1) �→ (−1)n(qµi

j,i − 1)Xje
n+1
(l1,...,lj+1,...,lc)

if li = n and i > j,

en(l1,...,lc) �→


(−1)
∑c

k=j+1 lk
( c−j∏
h1=1

q
µj+h1
j,j+h1

−
j−1∏
h2=1

q
µh2
h2,j

)
Xje

n+1
(l1,...,lj+1,...,lc)

if lj is even,

(−1)
∑c

k=j+1 lk

nj−1∑
kj=0

c−j∏
h1=1

q
µj+h1

(nj−1−kj)

j,j+h1

j−1∏
h2=1

q
µh2

kj
h2,j

X
nj−1
j en+1

(l1,...,lj+1,...,lc)
if lj is odd,

if li < n for 1 ≤ i ≤ c,

For homogeneous elements η ∈ HHm(A) and θ ∈ HHn(A), we have the Yoneda product
ηθ = ησm ∈ HHm+n(A) where σm is a lifting of θ in the following commutative diagram
of A-bimodules.

· · · �� Pm+n
dm+n ��

σm

��

· · · dn+2 �� Pn+1

dn+1 ��

σ1

��

Pn

θ

���
��

��
��

�

σ0

��
· · · �� Pm

dm �� · · · d2 �� P1
d1 �� P0

π �� A �� 0.

Proposition 9. Let (l1, . . . , lc) ∈ Ln, (l
′
1, . . . , l

′
c) ∈ Ln′. Then we have the lifting of en(l1,...,lc)

as follows.

σn′ : εn+n′

(l1+l′1,...,lc+l′c)
�→

∑
0 ≤ kj ≤ nj − 2

1 ≤ j ≤ c
such that

lj , l
′
j are odd

Q
∏

1 ≤ j ≤ c

such that
lj , l

′
j are odd

X
kj
j εn

′

(l′1,...,l
′
c)

∏

1 ≤ j ≤ c

such that
lj , l

′
j are odd

X
nj−2−kj
j ,

for n′ ≥ 0 where Q ∈ K depending on (l1 + l′1, . . . , lc + l′c) ∈ Ln+n′ and integers kj.

By Proposition 9, if n is odd or lj is odd for some 1 ≤ j ≤ c, en(l1,...,lc) is nilpotence.
By the complex P∗ and Yoneda product given by Proposition 9, we have the K-basis

of the Hochschild cohomology ring of A modulo nilpotence as follows.

Theorem 10. Let qi,j = q−1
j,i for 1 ≤ j < i ≤ c. The following elements form a K-basis

of HH∗(A)/N.
(1)

∑si
ki=1 e

n
(i,ki)

∈ HHn(A)/N for the even integer n and the integer i with 1 ≤ i ≤ c
which satisfy the following conditions:

q
nin/2
i,j = 1 for 1 ≤ j ≤ c.
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(2) en(l1,...,lc) ∈ HHn(A)/N for the even integer n and (l1, . . . , lc) ∈ Ln which satisfy the
following conditions:

li is even for 1 ≤ i ≤ c,
c∏

h=1

q
nhlh/2
j,h = 1 for 1 ≤ j ≤ c such that lj ̸= 0,

Remark 11. In the case of ni > 2 for 1 ≤ i ≤ c, the K-basis elements of HH∗(A)/N given
in Theorem 10 coincide with those of given in Theorem 2.

5. Examples of the support variety

In this section, we give the examples of the support variety of an A-module. In [5],
Snashall and Solberg defined the support variety V (M) of a A-module M by

V (M) = {m ∈ MaxSpecHH∗(A)/N|AnnExt∗A(M,A/radA) ⊆ m′}.
where m′ is the inverse image of m in HH∗(A) and AnnExt∗A(M,A/radA) is annihilator
of Ext∗A(M,A/radA).

Let K be an algebraically closed filed and r ∈ N. We consider the case c = 2, s1 =
s2 = 1,q1,2 is a primitive r-th root of unity and n1, n2 ̸≡ 0mod r ([2]). Then we have

HH∗(A)/N = K[X, Y ].

where X =
∑s1

k1=1 e(1,k1), Y =
∑s2

k2=1 e(2,k2) in HH2r(A).

Example 12. Let M1 = Axs1t
1 e1. We have Ext∗A(M1, A/radA) and the annihilator of

Ext∗A(M1, A/radA) as follows:

Ext∗A(M1, A/radA) =
⨿

n≥0 Ken(1,1),

AnnExt∗A(M1, A/radA) = (Y ).

And we have the support variety of M1 as follows:

V (M1) ={(a1, a2) ∈ K2| a2 = 0} as an affine algebraic set.

Example 13. Let M2 = AXs1t1
1 Xs2t2

2 and M3 = AXs1t1
1 e1 + AXs2t2

2 e1. We have the
annihilator of Ext∗A(Mi, A/radA) for i = 2, 3 as follows:

AnnExt∗A(Mi, A/radA) = 0.

And we have the support variety of Mi for 2 ≤ i ≤ 3 as follows:

V (Mi) = K2 as an affine plane.
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