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BATALIN-VILKOVISKY ALGEBRAS, TAMARKIN-TSYGAN
CALCULUS AND ALGEBRAS WITH DUALITY;

THE CASE OF FROBENIUS ALGEBRAS

ALEXANDER ZIMMERMANN

Abstract. This note reports on joint work with Thierry Lambre and Guodong Zhou.
Let A be a Frobenius algebra with diagonalisable Nakayama automorphism. We exhibit a
Tamarkin-Tsygan calculus on the Hochschild cohomology of A and Hochschild homology
of A with values in the Nakayama twisted bimodule. Since this pair is an algebra with
duality, as introduced by Lambre, these structures define a Batalin-Vilkovisky structure
on the cohomology ring of A. We further give an easy and practical criterion when a
Frobenius algebra has diagonalisable Nakayama automorphism.

1. Introduction

Hochschild cohomology HH∗(A) and Hochschild homology HH∗(A,M) with values in
a bimodule M of an algebra has a very rich structure. First, the Hochschild cohomology
is a graded commutative N-graded algebra. Then, Gerstenhaber showed in [9] that the
Hochschild cohomology algebra carries a graded Lie algebra structure, where the Lie
bracket is graded in the sense [ , ] : Hn+1(A) × Hm+1(A) → Hn+m+1(A). Moreover,
these two structures are compatible in the sense that [α,−] is a graded derivation of the
multiplicative structure. Structures of this kind are called Gerstenhaber algebras.
The Gerstenhaber bracket is somewhat mysterious and has been determined in only few

cases. A nice description in terms of coderivations was given by Stasheff in [21]. If there is
a differential ∆ of degree−1 of a Gerstenhaber algebra such that the Gerstenhaber bracket
is the obstruction of ∆ to be a graded derivation of the Hochschild cohomology, then the
Gerstenhaber algebra is called a Batalin-Vilkovisky algebra. This structure comes from
theoretical physics, more precisely from quantum field theories as explained in e.g. [10].
In representation theory the Batalin-Vilkovisky structure was popularised by Ginzburg

[11], where he proves that the Hochschild cohomology of a Calabi-Yau algebra A is a
Batalin-Vilkovisky algebra. This result was generalised by Kowalzig and Krähmer to
twisted Calabi-Yau algebras, i.e. there is n, such that the n-th syzygy of A as A ⊗ Aop-
module is 1Aα for some automorphism α of A, provided the twisting automorphism is
diagonalisable. In a parallel development Tradler [23] showed that for symmetric algebras
(i.e. k-algebras such that the k-linear dual of A is isomorphic to A as A − A-bimodule)
the Hochschild cohomology also caries the structure of a Batalin-Vilkovisky algebra. In
[17] Lambre, Zhou and Zimmermann show that the Hochschild cohomology ring of a
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Frobenius algebra is Batalin-Vilkovisky provided that the Nakayama automorphism is
diagonalisable.
We shall report in this note about the various steps to the proof of this result. We will

also give a short criterion which implies that the Nakayama automorphism of a Frobenius
algebra is diagonalisable.

Acknowledgement: I thank the organisers of the 47th Symposion on Ring and Repre-
sentation Theory in Osaka City university, and in particular Hideto Asashiba for the kind
invitation and great hospitality during my visit.

2. Batalin-Vilkovisky algebras

We first give the precise definition of a Batalin-Vilkovisky algebra.

Definition 1. • A Gerstenhaber algebra over a field k is the data (H∗,∪, [ , ]), where
H∗ = ⊕n∈ZHn is a graded k-vector space equipped with two bilinear maps

∪ : Hn ×Hm → Hn+m, (α, β) �→ α ∪ β

[ , ] : Hn+1 ×Hm+1 → Hn+m+1, (α, β) �→ [α, β]

called the cup product ∪, and the Lie bracket [ , ] respectively such that
– (H∗, ∪) is a graded commutative associative algebra with unit 1 ∈ H0,
– (H∗[−1], [ , ]) is a graded Lie algebra,
– for each homogeneous element α ∈ H∗[−1] the map [α,−] is a graded deriva-
tion of the algebra (H∗,∪).

• A Gerstenhaber algebra (H∗,∪, [ , ]) is a Batalin–Vilkovisky algebra (BV algebra
for short) if there is an operator ∆: H∗ → H∗−1 of degree −1 (called a generator
of the Gerstenhaber bracket [ , ]) such that ∆ ◦∆ = 0, ∆(1) = 0, and [ , ] is the
obstruction for ∆ to be a graded derivation of (H∗,∪), i.e.

[α, β] = (−1)|α|+1(∆(α ∪ β)−∆(α) ∪ β − (−1)|α|α ∪∆(β)),

for homogeneous elements α, β ∈ H∗.

Remark 2. Batalin-Vilkovisky algebras appeared in mathematical physics. As explained
in [27] and [13] the Batalin-Vilkovisky algebra formalism is fully used in the closed string
theory. As explained in [13] the Batalin-Vilkovisky structure gives an additional rigidity
to the string theory, and a certain number of choices which have to be made in this theory
respect this additional structure. More precisely, in string field theory one first chooses
a conformal field theory [10, Definition 3.1]. This field theory defines a vector space, the
state space, and a field is an element in this vector field. A string field theory action
is written as a formal power series with values in the string field. Then, certain choices
have to be made, linked to Feynman rules, and the physical observables are independent
of these choices. [13] show that the relation between two string field actions arises from
field transformations that are canonical with respect to the Lie bracket.

Some algebras have Hochschild cohomology rings which are Batalin-Vilkovisky algebras.

Theorem 3. (Ginzburg [11, Theorem 3.4.3]) Let A be a Calabi-Yau algebra of dimension
d. Then the Hochschild cohomology of A has the structure of a Batalin-Vilkovisky algebra.
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Ginzburg is actually much more precise. He constructs the map ∆ explicitly, and
obtains ∆ from the dual of Connes’ B-operator on the Hochschild homology complex,
and conjugation by the isomorphism HHn(A) � HHd−n(A) which is deduced from the
Calabi-Yau property. He also exhibits already there a connection to a Tamarkin-Tsygan
calculus, in the same way as we will explain in Section 3.
In a parallel development Tradler considered more the case of finite dimensional algebras

and proved that the Hochschild cohomology of symmetric algebras is a Batalin-Vilkovisky
algebra.

Theorem 4. (Tradler [23]) Let k be a field and let A be a finite dimensional symmetric
k-algebra. Then HH∗(A) is a Batalin-Vilkovisky algebra.

The operator ∆ is in this case the k-linear dual of Connes’ B-operator, using that for
symmetric algebras A we have HHn(A) � Homk(HHn(A), k) for all n ∈ N. Note that
the isomorphism uses the symmetrising form.
A next step was given by Kowalzig and Krähmer [15]. They generalise Ginzburg’s

result to a twisted version. For an automorphism α of an algebra A we denote by 1Aα the
A − A-bimodule which is the regular A-module as left-module, but where the action of
a ∈ A from the right is given by multiplication with α(a). An algebra is twisted Calabi-
Yau of dimension d if there is a class ω ∈ Hd(A, 1Aα) such that ωA ∩ − : H∗(A,M) →
Hd−∗(A, 1Aα ⊗A M) is an isomorphism (cf [12, Definition 3.6]).

Theorem 5. (Kowalzig and Krähmer [15]) Let A be a twisted Calabi-Yau algebra of
dimension d and twist α. If α acts as diagonalisable automorphism on the vector space
A, then HH∗(A) is a Batalin-Vilkovisky algebra.

Kowalzig and Krähmer obtain in [15] a twisted version of Connes’ map B, and use this
twisted version to obtain ∆ as its dual.

In joint work with Lambre and Zhou we shall be concerned with Frobenius algebras.
These play the same role for symmetric algebras as twisted Calabi-Yau algebras do for
Calabi-Yau algebras. Indeed, for Frobenius algebras we get an A − A-bimodule isomor-
phism Homk(A, k) � 1Aν for some automorphism ν of A, the Frobenius automorphism.
Therefore, the k-linear dual of HHn(A) is not isomorphic to HHn(A), but rather to
HHn(A, 1Aν), where ν is the Nakayama automorphism of A. For more ample details on
Frobenius algebras see [26, Sections 1.10 and 4.5].

3. Twisting by automorphisms, the Tamarkin-Tsygan calculus

We shall not give directly the map ∆. Instead we shall prove that some parts of the
Hochschild cohomology, together with the Hochschild homology, of a Frobenius algebra
carries another important structure: It is a Tamarkin-Tsygan calculus, sometimes also
called differential calculus.

Definition 6. A Tamarkin-Tsygan calculus is the data of Z-graded vector spaces H∗ and
H∗ together with graded bilinear inner laws ∪ and [ , ] of H∗ an a graded operation map
∩ of (H∗,∪) on H∗ such that

• (H∗,∪, [ , ]) is a Gerstenhaber algebra;
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• H∗ is a graded module over (H∗,∪) via the map ∩ : Hr⊗Hp → Hr−p, z⊗α �→ z∩α
for z ∈ Hr and α ∈ Hp. That is, if we denote ια(z) = (−1)rpz∩α, then ια∪β = ιαιβ;

• There is a map B : H∗ → H∗+1 such that B2 = 0 and we have

Lα ◦ ιβ − (−1)|β|ιβ ◦ Lα = ι[α,β]

where we denote Lα = B ◦ ια − (−1)|α|ια ◦B.

It is not surprising to learn that [8] prove that Hochschild homology and cohomology
give a Tamarkin-Tsygan calculus with the natural Gerstenhaber structure and a ∩ opera-
tion given by evaluation of the first terms of the Hochschild complex by some Hochschild
cocycle. This coincides with the classical ∩-product well known in Hochschild theory. We
note that the ∩ product can be defined as well on the action of HH∗(A) on HH∗(A,M)
for any A− A-bimodule M , but it is not this Tamarkin-Tsygan structure that we use.

Remark 7. It would be nice to extend Stasheff’s description [21] of the Gerstenhaber
bracket by coderivations to the Tamarkin-Tsygan calculus on Hochschild (co-)homology.

Let α be an automorphism of the algebra A. We now develop the following very general
construction. Recall the bar resolution BA. Its degree n homogeneous component is A⊗n+2

and its differential b is given by bn(a0 ⊗ · · · ⊗ an+1) =
∑n

i=0(−1)ia0 ⊗ · · · ai−1 ⊗ aiai+1 ⊗
ai+2 ⊗ · · · ⊗ an+1. It is well-known that this is a free A⊗ Aop-module resolution of A (cf
e.g. [26]). The complex HomA⊗Aop(BA,A) has homology HH∗(A) and the homology of
BA⊗A⊗Aop 1Aα is HH∗(A, 1Aα).
Observe that the degree n homogeneous component of BA⊗A⊗Aop 1Aα is isomorphic to

A⊗n and α acts diagonally on this space. Likewise, the degree n homogeneous component
of HomA⊗Aop(BA,A) is isomorphic to Homk(A

⊗n, k).
Since α is an algebra automorphism, α(1) = 1 and so 1 is an eigenvalue of the ac-

tion of α on A. It is easy to see that the eigenspace for the value 1 of the action
of α on HomA⊗Aop(BA,A), and on BA ⊗A⊗Aop 1Aα respectively, are actually subcom-
plexes of HomA⊗Aop(BA,A), and BA⊗A⊗Aop 1Aα respectively. Let HH∗

(1)(A), respectively

HH
(1)
∗ (A, 1Aα), be the corresponding homologies of these subcomplexes.

The structural maps ∪, ∩, [ , ] do restrict to HH∗
(1)(A) and to HH

(1)
∗ (A, 1Aα), which

can be verified by an easy computations in a few lines.

Theorem 8. (Lambre-Zhou-Zimmermann [17]) With the notation above, there is a degree

1 map βα of HH∗
(1)(A) such that (HH∗

(1)(A),∪, [ , ], HH
(1)
−∗ (A, 1Aα),∩, βα) is a Tamarkin-

Tsygan calculus.

We note that we need to use negative degrees for the homology part in order to get a
formally correct calculus. The map βα is much more tricky to obtain. It is an adaption
of Kowalzig-Krähmer’s map used in their proof.

4. Algebras with duality; the main result

The proofs we mentioned so far to prove that Hochschild cohomology is a Batalin-
Vilkovisky algebra always used both, the Hochschild cohomology and the Hochschild
homology, as well as some duality between them. Lambre formalised this in his concept
of an algebra with duality.
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Definition 9. (Lambre) An algebra with duality is given by (H∗,∪,H∗, ∂), where

• (H∗,∪) is a graded commutative unitary algebra with unit 1 ∈ H0,
• H∗ is a graded vector space and c is an element of Hd,
• ∂ is an isomorphism of vector spaces ∂ : H∗ → Hd−∗ satisfying ∂(c) = 1.

Observe that it is not really necessary to explicitly mention c. The third axiom implicitly
defines it as image of 1 under ∂. Now, we come to the link between Tamarkin-Tsygan
calculi and Batalin-Vilkovisky structures.

Proposition 10. Let (H∗,∪,H∗, c, ∂) be an algebra with duality.

(1) We suppose that
(a) (H∗,∪, [ , ],H∗,∩, B) is a Tamarkin-Tsygan calculus,
(b) the duality ∂ is a homomorphism of H∗-right modules, i.e. we have the rela-

tion ∂(z ∩ α) = ∂(z) ∪ α.
Then the Gerstenhaber algebra (H∗,∪, [ , ]) is a BV-algebra with generator ∆ =
∂ ◦B ◦ ∂−1.

(2) We suppose that (H∗,∪, [ , ],∆) is a BV-algebra with generator ∆. Then posing
B := ∂−1 ◦∆ ◦ ∂ and z ∩ α := ∂−1(∂(z) ∪ α), the data (H∗,∪, [ , ],H∗,∩, B) is a
Tamarkin-Tsygan calculus.

If α acts as diagonalisable automorphism on A, then HomA⊗Aop(BA,A) and BA⊗A⊗Aop

1Aα both decompose as a direct sum of eigenspace subcomplexes. Note however that we
may get eigenvalues for the complexes which do not occur as eigenvalues for the action on
A. This comes from the fact that if A =

⊕
λ∈Λ Aλ is an eigenspace decomposition, then

A⊗n =
⊕

(λ1,··· ,λn)∈Λn

Aλ1 ⊗ · · · ⊗ Aλn .

The automorphism α acts on Aλ1 ⊗ · · · ⊗ Aλn with the eigenvalue λ1 · · · · · λn. Therefore
if Λ is the set of eigenvalues of α, then the Hochschild complex decomposes as direct sum
of subcomplexes which are eigenspaces for some λ ∈ 〈Λ〉, where 〈Λ〉 is the submonoid of
the multiplicative group k× of the base field generated by Λ. This decomposition is also
the point where we use that α acts on A as diagonalisable automorphism.
Moreover, we get the most important formula on BA⊗A⊗Aop 1Aα:

b ◦ βα + βα ◦ b = 1− T

where T is the diagonal map of α on A⊗n for each n, where b denotes the Hochschild
differential and where βα is defined in Theorem 8. Hence, only for the eigenspace of α for
the eigenvalue 1 the corresponding subcomplex is not homotopic to 0. This shows

Proposition 11. If α is diagonalisable, then HH
(1)
∗ (A, 1Aα) = HH∗(A, 1Aα).

We are almost done. Now suppose that A is a Frobenius algebra with Nakayama
automorphism ν and consider the case α = ν. Then Theorem 8 and Proposition 11
provide a Tamarkin-Tsygan calculus on the Hochschild cohomology of a Frobenius algebra
and the homology with values in the Nakayama twisted bimodule. Since

Homk(HHn(A, 1Aν), k) � HHn(A)
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we easily get an algebra with duality satisfying the hypotheses of the first part of Propo-
sition 10. This shows

Theorem 12. (Lambre, Zhou, Zimmermann [17]) Let k be a field and let A be a Frobe-
nius k-algebra with diagonalisable Nakayama automorphism. Then HH∗(A) is a Batalin-
Vilkovisky algebra.

Remark 13. Volkov obtained in [24] independently and at the same time a similar result
by exhibiting the operator ∆ by explicit computation on the Hochschild cocycles.

Remark 14. Let k be the algebraic closure of k and let A := k ⊗k A. If A is a Frobenius
k-algebra, then A is a Frobenius k-algebra. We actually only need that the Nakayama
automorphism of A acts as diagonalisable automorphism on A.

5. Diagonalisable Nakayama automorphism

We are left with the question how we may verify when a Nakayama automorphism is
diagonalisable. There is an easy case: If A is a Frobenius k-algebra and ν is of finite order
n. Then the action of ν on A is a representation of the cyclic group of order n, and if
n is invertible in k, then this group ring is semisimple. Hence, for large enough fields k
with nk = k we have that the action of ν is diagonalisable. This happens for example for
finite dimensional Hopf algebras by a result of Radford [19] in combination with a result
by Larson-Sweedler [18]. Also preprojective algebras of Dynkin type have this property.
For quantum complete intersections it can be shown by a direct computation that there
also we get a diagonalisable Nakayama automorphism.
What about more general basic Frobenius algebras? Consider basic algebras and let

hence A = kQ/I be a finite dimensional Frobenius algebra given by quiver with relations.
We can choose a basis B of A consisting of paths which also contains a basis for the socle
of each indecomposable projective A-module. Then by [14, Proposition 2.8], there is a
natural choice of the defining bilinear form 〈a, b〉 = tr(ab) for a, b ∈ A induced by the
trace map

tr : A → k, p ∈ B �→
{

1 if p ∈ soc(A) ∩ B
0 otherwise

Then we show the following useful

Proposition 15. (Lambre, Zhou, Zimmermann [17]) Assume that the basis B satisfies
two further conditions:

(1) for arbitrary two paths p, q ∈ B, there exist another path r ∈ B and a constant
λ ∈ k such that p · q = λr ∈ A

(2) for each path p ∈ B, there exists a unique element p∗ ∈ B such that 0 �= p · p∗ ∈
soc(A)

If k is an algebraically closed field of characteristic 0 or of characteristic p with p strictly
bigger than the number of arrows of Q. Then the two conditions (1) and (2) imply that
the Nakayama automorphism of A is semisimple and the Hochschild cohomology of A is
a BV algebra.

By a classification result of Asashiba [1] we get
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Lemma 16. Each self-injective algebra of finite representation type is Morita equivalent to
an algebra kQ/I given by a quiver Q modulo admissible relations I verifying the conditions
(1) and (2).

An alternative proof can be given by the fact that each representation-finite algebra
has a multiplicative basis (cf. [2]).

Lemma 17. Basic special biserial algebras satisfy the hypotheses of Proposition 15.

Finally, we were looking at algebras of polynomial growth. These were studied by Holm,
Skowroński, Bocian, Bialkowsky for a classification up to derived equivalences, and by
Zhou and Zimmermann [25] up to stable equivalences, clearing also a few remaining cases
in the derived equivalence classification. Also there we can show that almost all the cases
satisfy the hypotheses of Proposition 15. The few remaining situations can be done by an
elementary computation on the quiver, using the construction of Holm-Zimmermann [14]
mentioned above.
We finish by mentioning that an easy computation shows that for a field k of charac-

teristic 2 the self-injective Nakayama algebra with two simples and Loewy length 4 does
not have a semisimple Nakayama automorphism action. The quiver of this Nakayama
algebra has two arrows such that Lemma 16 shows that the hypothesis in Proposition 15
on the characteristic of the base field is indeed necessary.

Remark 18. I want to mention that the formula for the Frobenius bilinear form given
by [14] was originally used to classify deformed preprojective algebras ([4], see also [5]
for a rectification in case of type E) of type Ln up to derived equivalence. This was
done using the so-called Külshammer structure, an additional structure on the degree 0
Hochschild homology of an algebra [3], linked to the p-power map. In joint work with
Sorlin [20] we extended the classification to deformed preprojective algebras of type Dn.
For the precise and somewhat technical definition of the deformation parameter see [4,
Proposition 6.2] or [5, Example 10.6]. We computed the degree 0 Hochschild homology of
deformed preprojective algebras of type Dn and showed that over an algebraically closed
field the deformed preprojective algebra is never derived equivalent to the non deformed
preprojective algebra. Indeed, the dimension of the degree 0 Hochschild homology of the
deformed preprojective algebra with deformation parameter k is at most n + 2 + k for
k ≤ n− 3 whereas this dimension is 3n in the non-deformed case.

The preprojective algebras of generalised Dynkin type are also interesting with respect
to the Tamarkin-Tsygan structure on the Hochschild (co-)homology. Ching-Hwa Eu com-
puted this explicitly (cf [6, 7]).
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