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ON SILTING-DISCRETE TRIANGULATED CATEGORIES

TAKUMA AIHARA

Abstract. The aim of this paper is to study silting-discrete triangulated categories.
We establish a simple criterion for silting-discreteness in terms of 2-term silting objects.
This gives a powerful tool to prove silting-discreteness of finite dimensional algebras.
Moreover, we will show Bongartz-type Lemma for silting-discrete triangulated categories.

1. Introduction

In the study of triangulated categories, the class of tilting objects is one of the most
important classes of objects, and tilting mutation for tilting objects often plays a crucial
role, e.g. categorification of cluster algebras [8, 10] and Broué’s conjecture in modular
representation theory of finite groups [11]. From viewpoint of mutation, it was pointed
out in [5] that one should deal with a more general class of silting objects than tilting
objects, and silting mutation for silting objects were introduced. Moreover, the set of
silting objects naturally has the structure of a partially orderd set which is closely related
with silting mutation [5]. When a silting object is fixed, the partial order yields the notion
of lengths of objects [3].

A problem is to understand the whole context of silting objects; e.g. to give a combi-
natorial description of silting objects. A triangulated category is called silting-connected
provided all silting objects are reachable each other by iterated silting mutation. In this
case, we can describe the combinatorial structure of the triangulated category in terms of
silting objects and the relationship given by silting mutation. The silting-discrete trian-
gulated categories are in some sense the simplest kinds of silting-connected triangulated
categories [3], that is, the triangulated category admits a silting object A such that for
any positive integer � > 0, there exist only finitely many silting objects of the length �
with respect to A: a finite dimensional algebra is also said to be silting-discrete if the
perfect derived category of the algebra is silting-discrete. For example, we know that local
algebras, path algebras of Dynkin type and representation-finite symmetric algebras are
silting-discrete [5, 3].

We investigate silting-discrete triangulated categories and study the following question:

Question 1. When is a triangulated category silting-discrete?

The first aim of this pape is to give an answer to this question. A triangulated category
is said to be 2-silting-finite if for every silting object T , there exist only finitely many
silting objects of the length 2 with respect to T .

A main result of this paper is the following theorem.
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Theorem 2 (Theorem 16). A triangulated category is silting-discrete if and only if it is
2-silting-finite.

A great advantage of this theorem is that we can let Question 1 come down to the
question of the finiteness of certain modules for algebras: For a silting object A, there is
a one-to-one correspondence between silting objects of the length 2 with respect to A and
support τ -tilting modules for the endomorphism algebra of A [2, 9].

Therefore, Theorem 2 gives a powerful tool to prove that a given finite dimensional
algebra is silting-discrete. In fact, Theorem 2 will be applied in [1] and [4] to show that
the following algebras are silting-discrete:

• Brauer graph algebras of type odd;
• Preprojective algebras of Dynkin type D2n, E7, E8.

The second aim of this paper is to study a generalization of famous Bongartz’s Lemma
[6], which says that every (classical) pretilting module is partial tilting. On the other hand,
a naive generalization of Bongartz’s Lemma for tilting objects in a triangulated category
fails: an easy example [12] shows that a pretilting object in a triangulated category is not
necessarily partial tilting. In the previous paper [3], we observed that it is reasonable to
consider Bongartz-type Lemma for silting objects in a triangulated category. Thus, we
discuss the following question:

Question 3. Is any presilting object partial silting?

In this paper, we give a positive answer to Question 3 for silting-discrete triangulated
categories.

Theorem 4 (Theorem 17). Any presilting object of a silting-discrete triangulated category
is partial silting.

A point for the proofs of Theorem 2 and Theorem 17 is to use a kind of induction on
the length � of a (pre)silting object T . To do this, we introduce the notion of “minimal
silting objects” for T , which is a minimal element in a poset consisting of certain silting
objects (see Definition 10 for details). The key result for the proofs of Theorem 2 and
Theorem 17 is the following theorem.

Theorem 5 (Theorem 11). Let A be a silting object and T a presilting object of the length
� with respect to A. If there exists a minimal silting object P for T , then the length of T
with respect to P is at most � − 1.

This paper is organized as follows. In section 2, we introduce the notion of minimal
silting objects and state a main theorem of this paper (Theorem 11). In section 3, we study
silting-discrete triangulated categories and give the theorems on equivalent conditions
of and Bongartz-type Lemma for silting-discrete triangulated categories (Theorem 16
and Theorem 17). In section 4, we give several examples of silting-discrete triangulated
categories. Furthermore, we will know from the final example (Example 23) that the
finiteness of silting objects of length 2 is not derived invariant.

Notation. Throughout this paper, let T be a Krull-Schmidt triangulated category and
assume that it satisfies the following property:

(F) For any object X of T , the additive closure add X is functorially finite in T .
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For example, let R be a complete local Noetherian ring and T an R-linear idempotent-
complete triangulated category such that HomT (X, Y ) is a finitely generated R-module
for any object X and Y of T . Then T is a Krull-Schmidt triangulated category satisfying
the property (F).

2. Minimal silting objects

In this section, we study silting mutation and a main theorem of this paper is stated.
Let us start with recalling the definition of silting objects.

Definition 6. (1) We say that an object T in T is presilting (pretilting) if it satisfies
HomT (T, T [i]) = 0 for any i > 0 (i �= 0).

(2) An object T is said to be silting (tilting) if it is presilting (pretilting) and generates
T by taking direct summands, mapping cones and shifts.

(3) A presilting object T is called partial silting provided it is a direct summand of some
silting object.

We denote by silt T the set of non-isomorphic basic silting objects in T .

In the rest of this paper, we assume that T has a silting object.
It is known that the number of non-isomorphic indecomposable summands of any silting

object does not depend on the choice of silting objects.

Proposition 7. [5] Let T and U be silting objects of T . Then the number of non-
isomorphic indecomposable summands of T coincides with that of U .

For objects M and N of T , we write M ≥ N if HomT (M, N [n]) = 0 for any n > 0.
Note that ≥ is not a partial order on T . According to [5], we have that ≥ gives a partial
order on silt T .

We also recall silting mutation for silting objects.

Definition 8. Let T be a basic silting object of T . For a decomposition T := X ⊕ M ,
we take a triangle

X
f �� M ′ �� Y �� X[1]

with a minimal left add M -approximation f of X. Then µ−
X(T ) := Y ⊕M is again silting,

and we call it the left mutation of T with respect to X. Dually, define the right mutation
µ+

X(T ). (Silting) mutation will mean either left or right mutation. Mutation is said to be
irreducible if X is indecomposable.

We get basic properties of silting mutation.

Proposition 9. [5, 3] With the notations as in Definition 8, the following hold:

(1) We have the inequality T > µ−
X(T ).

(2) The right mutation µ+
Y (µ−

X(T )) of µ−
X(T ) with respect to Y is isomorphic to T .

(3) If X is indecomposable, then there is no silting object U satisfying T > U > µ−
X(T ).
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(4) Let U be a presilting object with T ≥ U which does not belong to add T . For U0 := U ,
take triangles

U1
�� T0

f0 �� U0
�� U1[1]

· · ·
U�

�� T�−1

f�−1 �� U�−1
�� U�[1]

0 �� T�

f� �� U�
�� 0

where fi is a minimal right add T -approximation of Ui for 0 ≤ i ≤ �. Let X be an
indecomposable summand of T . If X belongs to add T�, then we have µ−

X(T ) ≥ U .

We always use the following terminology.

Definition 10. We define a subset of silt T as follows:

∇(A; T ) := {U ∈ silt T | A ≥ U ≥ A[1] and U ≥ T},
where A is a silting object and T is a presilting object with A ≥ T . We can take a
non-negative interger � such that T ≥ A[�]. Thus, one visualize such a U as follows:

A[1]

��������������

A U

������

���������������� A[�]

T

������

Now we state the main theorem of this paper.

Theorem 11. If there exists a minimal element P in the poset ∇(A; T ), then we have
T ≥ P [� − 1].

We can inductively get silting objects.

Corollary 12. With the notation as in Definition 10, assume that for any silting object
B with A ≥ B ≥ T , the poset ∇(B; T ) admits a minimal element. Then there exists a
silting object P in T satisfying P ≥ T ≥ P [1].

Proof. We may assume � ≥ 2. Since we have a minimal element A1 in ∇(A; T ), by
Theorem 11 it is obtained that A1 ≥ T ≥ A1[� − 1]. As our assumption, we can repeat
this argument and have a sequence

A ≥ A1 ≥ · · · ≥ A�−1 ≥ T ≥ A�−1[1] ≥ · · · ≥ A1[� − 1] ≥ A[�]

of silting objects with Ai+1 minimal in ∇(Ai; T ) for 0 ≤ i ≤ � − 2. Thus, we get the
desired silting object P := A�−1. �

From Corollary 12 and [3, Proposition 2.16], we immediately obtain the following corol-
lary.

Corollary 13. Under the assumption as in Corollary 12, T is a partial silting object.
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3. Silting-discrete triangulated categories

In this section, we discuss silting-discrete triangulated categories.
We begin with recalling the definition of silting-discrete triangulated categories.

Definition 14. A triangulated category T is said to be silting-discrete if there exists a
silting object A such that for any � > 0, the subset {T ∈ silt T | A ≥ T ≥ A[�]} of silt T
is a finite set.

For a silting object A of T , we denote by 2siltA T the subset of silt T consisting of all
basic silting objects T with A ≥ T ≥ A[1].

We can easily check the following lemma.

Lemma 15. Let A be a silting object of T . If 2siltA T is a finite set, then for every
presilting object T of T with A ≥ T , the poset ∇(A; T ) has a minimal element.

We say that T is 2-silting-finite if 2siltT T is a finite set for any silting object T of T .
Now the first main theorem of this section is stated.

Theorem 16. The following are equivalent:

(1) T is silting-discrete.
(2) It is 2-silting-finite.
(3) It admits a silting object A such that 2siltP T is a finite set for any iterated irreducible

left mutation P of A.

Proof. It is obvious that the implications (1)⇒(2)⇒(3) hold.
We show that the implication (3)⇒(1) holds. Let T be a silting object with A ≥ T ≥

A[�] for some � > 0. Since 2siltA T is a finite set, we observe that the poset ∇(A; T ) has
a minimal element P by Lemma 15. It follows from Theorem 11 that the inequalities
P ≥ T ≥ P [� − 1] hold, whence one has

{T ∈ silt T | A ≥ T ≥ A[�]} ⊆
⋃

P∈2siltA T
{U ∈ silt T | P ≥ U ≥ P [� − 1]}.

By [3, Theorem 3.5], the finiteness of 2siltA T leads to the conclusion that P can be
obtained from A by iterated irreducible left mutation. Therefore, our assumption yields
that 2siltP T is also a finite set. Repeating this argument leads to the assertion. �

We remark that the finiteness of 2siltP T depends on the choice of silting objects P :
For a left mutation P of a silting object A, the set 2siltP T is not necessarily a finite set
even if 2siltA T is finite (see Example 23).

Finally, we have the second main theorem of this section, which is a direct consequence
of Corollary 13.

Theorem 17. If T is silting-discrete, then every presilting object is partial silting.

4. Examples

This section is devoted to giving several examples of silting-discrete triangulated cate-
gories.
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The first example is an observation from the viewpoint of triangle dimensions in the
sense of Rouquier [13]: a triangulated category T has triangle dimension 0 (dim T = 0)
if T = add{M [i] | i ∈ Z} for some object M of T .

Example 18. If dim T = 0, then T is silting-discrete.

In the rest of this paper, let Λ be a finite dimensional algebra over an algebraically
closed field k which is indecomposable and basic. We denote by Kb(proj Λ) the bounded
homotopy category of finitely generated projective Λ-modules. Then it is a Krull-Schmidt
triangulated category satisfying the property (F).

An algebra Λ is said to be silting-discrete if Kb(proj Λ) is silting-discrete.
We give several examples of silting-discrete algebras. The most easiest example of

silting-discrete algebras is the class of local algebras [5].
We characterize silting-discrete hereditary algebras.

Example 19. Assume that Λ is hereditary. Then the following are equivalent:

(1) Λ is silting-discrete;
(2) It is of Dynkin type A,D,E;
(3) 2siltΛ(Kb(proj Λ)) is a finite set.

Proof. We can easily show the implications (2)
Ex.18
=⇒(1)

Def.
=⇒(3)

Easy
=⇒(2). �

A concept of derived-discrete algebras was introduced in [14]: an algebra Λ is said to
be derived-discrete if for every positive element x of K0(A)(Z), there exist only finitely
many isomorphism classes of indecomposable objects X of the bounded derived cate-
gory Db(mod Λ) such that (dimH i(X))i∈Z = x where K0(A), dimM and H i stand for
the Grothendieck group of mod Λ, the dimension vecter of a module M and the i-th
cohomological functor.

Recently, the following result was proved by Broomhead-Pauksztello-Ploog.

Example 20. [7]Any derived-discrete algebra with finite global dimension is silting-
discrete.

We know two classes of silting-discrete symmetric algebras.

Example 21. [3, 1] An algebra Λ is silting-discrete if it is either

(1) a representation-finite symmetric algebra or
(2) a Brauer graph algebra of type odd.

The following example was shown by a joint work with Y. Mizuno.

Example 22. [4] The preprojective algebra of Dynkin type D2n(n ≥ 2), E7, E8 is silting-
discrete.

We close this paper by giving an example which says that the finiteness of 2siltP T
depends on the choice of silting objects P .

–6–



― 12 ― ― 13 ―

Example 23. Let Λ be the algebra presented by the quiver

2 x2

��������

1

x1
��������

y1 �������� 4

3
y2

��������

with relations x1x2 = 0 = y1y2. Then 2siltΛ(Kb(proj Λ)) is a finite set. Now, let T :=
µ−

P2
µ−

P3
µ−

P4
(Λ), which is isomorphic to a tilting module whose endomorphism algebra Γ is

the path algebra obtained by the quiver

2

��������

1

��������

�������� 4

3

��������

.

We conclude from Example 19 that 2siltΓ(Kb(proj Γ)), hence 2siltT (Kb(proj Λ)), is not a
finite set.
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