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TILTING COMPLEXES OVER PREPROJECTIVE ALGEBRAS OF

DYNKIN TYPE

TAKUMA AIHARA AND YUYA MIZUNO

Abstract. In this note, we explain a connection between braid groups and tilting com-
plexes over preprojective algebras of Dynkin (A,D,E) type. More precisely, we classify
all tilting complexes by giving a bijection with elements of the braid groups.

1. Introduction

Derived categories are nowadays considered as a fundamental object in many branches
of mathematics including representation theory and algebraic geometry. One of the im-
portant problems is to study their equivalences. By Rickard’s Morita theorem for derived
categories, it is known that derived equivalences are controlled by tilting complexes [28].
Tilting theory provides several useful methods for studying tilting complexes and, in par-
ticular, mutation plays a significant role. Roughly speaking, mutation is an operation,
for a certain class of objects, to obtain a new object from a given one by replacing a
summand. In the case of tilting modules, their mutation was formulated by Riedtmann-
Schofield and Happel-Unger [30, 16, 32]. For example, APR (Auslander-Platzeck-Reiten)
tilting modules [5] and Okuyama-Rickard complexes [29, 27, 18] can be regarded as a
special case of tilting mutation. One of the negative aspects of tilting mutation is that
some summands of a tilting complex can not be replaced to get a new one and hence we
can not repeat tilting mutation. To remove this disadvantage, Aihara-Iyama studied a
wider class of mutation, called silting mutation and it is shown that silting mutation is
always possible and it admits a combinatorial description [4].

We give a further development of tilting (silting) theory and we determine all tilting
complexes over preprojective algebras of Dynkin type.

2. Main results

2.1. Preprojective algebras. Preprojective algebras was first introduced by Gelfand-
Ponomarev [15], and later formulated and developed in [14, 7]. Since then, they are one
of the fundamental objects in the representation theory (refer to a survey paper [31]).

Let K be an algebraically closed field and Q a finite connected acyclic quiver. We
denote by Q the double quiver of Q, which is obtained by adding an arrow a∗ : j → i
for each arrow a : i → j in Q1. The preprojective algebra ΛQ = Λ associated to Q is the
algebra KQ/I, where I is the ideal in the path algebra KQ generated by the relations of
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the form: �

a∈Q1

(aa∗ − a∗a).

Let Q be a Dynkin quiver and ei the primitive idempotent of Λ associated with i ∈ Q0.
Then the preprojective algebra of Q is finite dimensional and selfinjective [11, Theorem
4.8]. We denote the Nakayama permutation of Λ by σ : Q0 → Q0 (i.e. D(Λeσ(i)) ∼= eiΛ,
where D := HomK(−, K)).

Note that ΛQ does not depend on the orientation of Q.

2.2. Weyl group. We refer to [8, 19] for basic properties of the Weyl (Coxeter) group.
Let Q be a quiver of type A, B(C), D, E and F . The Weyl group WQ associated to Q is
defined by the generators si (i ∈ Q0) and relations (sisj)

m(i,j) = 1, where

m(i, j) :=





1 if i = j;
2 if no edge between i and j;
3 if there is an edge i — j,

4 if there is an edge i
4
— j.

Each element w ∈ WQ can be written in the form w = si1 · · · sik . If k is minimal among
all such expressions for w, then k is called the length of w and we denote by l(w) = k. In
this case, we call si1 · · · sik a reduced expression of w.

Let σ be the Nakayama permutation of Λ. Then σ acts on an element of the Weyl group
WQ by σ(w) := sσ(i1)sσ(i2) · · · sσ(iℓ) for w = si1si2 · · · siℓ ∈ WQ. We define the subgroup
W σ

Q of WQ by
W σ

Q := {w ∈ W | σ(w) = w}.

Then we have the following result. (See [13, Chapter 13]).

Theorem 1. Let Q be a Dynkin (A,D,E) quiver and WQ the Weyl group of Q. Let
Q′ = Q if Q is type D2n, E7 and E8. Otherwise, let Q′ be a quiver, respectively, given by
the following type.

Q A2n−1, A2n D2n+1 E6

Q′ Bn B2n F4

Then W σ
Q is isomorphic to WQ′.

We call the quiver Q′ given in Theorem 1 the folding quiver of Q.

Example 2. Let Q be a quiver of type A5. Then one can check that W σ
Q is given by

�s1, (s2s4), (s3s5)� and this group is isomorphic to WQ′ , where Q′ is a quiver of type B3.

2.3. Support τ-tilting modules. The notion of support τ -tilting modules was intro-
duced in [2], as a generalization of tilting modules. We refer to [2, 21] for several nice
properties of support τ -tilting modules.

Let Λ be a finite dimensional algebra and we denote by τ the AR translation [6].

Definition 3. We call a Λ-module X τ -tilting if X is HomΛ(X, τX) = 0 and |X| = |Λ|,
where |X| denotes the number of non-isomorphic indecomposable direct summands of X.

Moreover, we call a Λ-module X support τ -tilting if there exists an idempotent e of Λ
such that X is a τ -tilting (Λ/�e�)-module.

–2–



― 16 ―

We denote by sτ -tiltΛ the set of isomorphism classes of basic support τ -tilting Λ-
modules.

Remark 4. We note that support τ -tilting modules can be described as pairs. These
definition are essentially same.

Now let Q be a Dynkin quiver with Q0 = {1, . . . , n} and Λ the preprojective algebra of
Q. We denote by Ii := Λ(1 − ei)Λ for i ∈ Q0. We denote by �I1, . . . , In� the set of ideals
of Λ which can be written as

Ii1Ii2 · · · Iik

for some k ≥ 0 and i1, . . . , ik ∈ Q0.
Then following result plays an important role in this note.

Theorem 5. [9, 25] Under the above notation,

(a) There exists a bijection WQ → �I1, . . . , In�, which is given by w �→ Iw = Ii1Ii2 · · · Iik

for any reduced expression w = si1 · · · sik .
(b) It gives a bijection between the elements of the Weyl group WQ and the set sτ -tiltΛ

of isomorphism classes of basic support τ -tilting Λ-modules.

We remark that the above ideals Iw are tilting modules in the case of non-Dynkin type
in [20, 9].

2.4. Silting complexes. Silting complexes are a generalization of tilting complexes,
which were introduced by Keller-Vossieck [23]. They were originally invented as a tool for
studying tilting complexes. Nonetheless, silting complexes have turned out to have deep
connections with several important complexes such as t-structures [10, 24, 12, 22].

We recall the definition of silting complexes as follows.

Definition 6. Let Λ be a finite dimensional algebra and Kb(projΛ) the bounded homotopy
category of the finitely generated projective Λ-modules.

(a) We call a complex P in Kb(projΛ) is presilting (respectively, pretilting) if it satisfies
HomKb(projΛ)(P, P [i]) = 0 for any i > 0 (respectively, i �= 0).

(b) We call a complex P in Kb(projΛ) silting (respectively, tilting) if it is presilt-
ing (respectively, pretilting) and the smallest thick subcategory containing P is
Kb(projΛ).

We denote by silt Λ (respectively, tilt Λ) the set of non-isomorphic basic silting (respec-
tively, tilting) complexes in Kb(projΛ).

For complexes P and Q of Kb(projΛ), we write P ≥ Q if HomKb(projΛ)(P, Q[i]) = 0 for
any i > 0. Then the relation ≥ gives a partial order on silt Λ [4, Theorem 2.11] (cf. [17]).

Moreover, a complex T ∈ Kb(projΛ) is called 2-term provided it is concerned in the
degree 0 and −1. We denote by 2-silt Λ (respectively, 2-tilt Λ) the subset of silt Λ (respec-
tively, tilt Λ) consisting of 2-term complexes. Note that a complex T is 2-term if and only
if Λ ≥ T ≥ Λ[1].

Then we have the following nice correspondence.

Theorem 7. [2, Theorem 3.2] Let Λ be a finite dimensional algebra. There exists a
bijection

sτ -tiltΛ ↔ 2-silt Λ.
–3–
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By the above correspondence, we can give a description of 2-term silting complexes by
calculating support τ -tilting modules, which is much simpler than calculations of silting
complexes.

From now on, let Q be a Dynkin quiver and Λ the preprojective algebra of Q. Then,
as a corollary of Theorem 5 and 7, we have the following corollary.

Corollary 8. We have a bijection

WQ ↔ 2-silt Λ.

Thus we can parameterize 2-term silting complexes by the Weyl group. Moreover,
we can describe 2-term tilting complexes in terms of the Weyl group by the following
proposition.

Proposition 9. Let ν := D HomΛ(−, Λ) the Nakayama functor of Λ and σ : Q0 → Q0

the Nakayama permutation of Λ. Then ν(Iw) ∼= Iw if and only if σ(w) = w. In particular,
We have a bijection

W σ
Q ↔ 2-tilt Λ.

Then by Theorem 1, we can understand W σ
Q as another type of the Weyl group.

Example 10. Let Q be a quiver of type A3 and Λ the preprojective algebra of Q. Then
the support τ -tilting quiver of Λ ([2, Definition 2.29]) is given as follows.
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The framed modules indicate ν-stable modules [26] (i.e. Iw
∼= ν(Iw)), which is equivalent

to say that σ(w) = w by Proposition 9. Hence Theorem 1 implies that these modules
correspond to the subgroup W σ

Q = �(s1s3), s2� and it is isomorphic to the Weyl group of
type B2.
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Next we use (silting) mutation. Let Λ = X⊕Y . We denote by µX(Λ) the left mutation
of Λ with respect to X. It is not necessarily tilting in general (cf.[1]). However, if it is
tilting, then we have the following nice result.

Proposition 11. Assume that µX(Λ) is a tilting complex, then we have an isomorphism

EndKb(projΛ)(µX(Λ)) ∼= Λ.

Togher with this proposition, the finiteness of 2-silt Λ implies that tilting-discreteness
of Λ and we conclude that any tilting complex is obtained from Λ by iterated mutation
(see [3]). Then we extend Proposition 9 and obtain the following consequence.

Theorem 12. Let Q be a Dynkin quiver, Λ the preprojective algebra of Q and Q′ the
folding quiver of Q. We denote the braid group by BQ′. Then we have a bijection

BQ′ ↔ tilt Λ.

Thus we can parametrize any tilting complex by the braid group.
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