GORENSTEINNESS ON THE PUNCTURED SPECTRUM

TOKUJI ARAYA AND KEI-ICHIRO IIMA

ABSTRACT. In this article, we shall characterize torsionfreeness of modules with respect to a semidualizing module in terms of the Serre's condition (S_n) . As an application we give a characterization of Cohen-Macaulay rings R such that R_p is Gorenstein for all prime ideals \mathfrak{p} with height less than n.

1. INTRODUCTION

Auslander and Bridger introduce a notion of n-torsion free as generalization of reflexive [1]. Evans and Griffith give a characterization of *n*-torsionfree modules [3].

The notion of *n*-torsion free with respect to a semidualizing module has been introduced by Takahashi [6]. In this article, we study an *n*-torsionfreeness of modules with respect to a semidualizing module in terms of the Serre's condition (S_n) . Recently, Dibaei and Sadeghi [2] give a similar property independently.

Proposition 1. Let n be a non-negative integer. Assume that R satisfies the conditions (G_{n-1}^{C}) and (S_n) . Then the following statements are equivalent for an R-module M:

- (1) M is n-C-torsionfree,
- (2) There exists a exact sequence $0 \to M \to P_C^1 \to \cdots \to P_C^n$ such that each P_C^i is a direct summand of direct sum of finite copies of C and that C-dual sequence $P_C^{n^{\dagger}} \to \cdots \to P_C^{n^{\dagger}} \to M^{\dagger} \to 0$ is exact. Here, $(-)^{\dagger} = \operatorname{Hom}(-, C)$.
- (3) M is n-C-syzygy,
- (4) M satisfies the condition (S_n) .

The following throrem is a main theorem of this article.

Theorem 2. Let R be a Cohen-Macaulay local ring with a dualizing module ω . For non-negative integer n, the following conditions are equivalent:

- C_p is dualizing R_p-module for all prime ideal p of hight at most n,
 (S_{n+1})(R) = Ωⁿ⁺¹_C(modR),
- (3) $\omega \in \Omega_C^{n+1}(\mathrm{mod} R)$.

This theorem recovers a result of Leuschke and Wiegand [5] which gives a characterization of Cohen-Macaulay rings R such that $R_{\mathfrak{p}}$ is Gorenstein for all prime ideals \mathfrak{p} with height less than n.

The detailed version of this paper will be submitted for publication elsewhere.

The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (C) 26400056.

2. Preliminaries

Throughout the rest of this article, let R be a commutative noetherian ring. All modules are assumed to be finitely generated. In this section, we give some notions and properties.

An *R*-module *C* is called *semidualizing* if the homothety map $R \to \text{Hom}_R(C, C)$ is an isomorphism and if $\text{Ext}^i_R(C, C) = 0$ for all i > 0. A rank 1 free module *R* and a dualizing module ω over Cohen-Macaulay local rings are typical examples of semidualizing modules. From now on, we fix a semidualizing module *C* and put $(-)^{\dagger} = \text{Hom}_R(-, C)$.

Let $\dots \to P_1 \xrightarrow{\partial} P_0 \to M \to 0$ be a projective resolution of an *R*-module *M*. We define a *C*-transpose module $\operatorname{Tr}_C M$ of *M* the cokernel of $P_0^{\dagger} \xrightarrow{\partial^{\dagger}} P_1^{\dagger}$. We remark that $\operatorname{Tr}_C M$ is uniquely determined up to direct summands of finite direct sums of copy of *C*. Note that if *C* is isomorphic to *R* then *C*-transpose coincides with ordinary (Auslander) transpose. An *R*-module *M* is called *n*-*C*-torsionfree if $\operatorname{Ext}_R^i(\operatorname{Tr}_C M, C) = 0$ for all $1 \le i \le n$.

We denote by λ_M the natural map $M \to M^{\dagger\dagger}$. *n*-*C*-torsionfreeness has following properties similar to ordinary *n*-torsionfreeness [1]. One can show this by diagram chasing (c.f. [6]).

Proposition 3. Let M be an R-module.

- (1) M is 1-C-torsionfree if and only if λ_M is a monomorphism,
- (2) M is 2-C-torsionfree if and only if λ_M is an isomorphism,
- (3) Let $n \geq 3$. M is n-C-torsionfree if and only if λ_M is an isomorphism and if $\operatorname{Ext}^i_R(M^{\dagger}, C) = 0$ for all $1 \leq i \leq n-2$.

An *R*-module *M* is called *n*-*C*-syzygy if there exists an exact sequence $0 \to M \to P_C^1 \to P_C^2 \to \cdots \to P_C^n$ such that each P_C^i is a direct summand of finite direct sums of copy of *C*. We set $\Omega_C^n(\text{mod}R)$ the class of *n*-*C*-syzygy modules.

We say that an *R*-module *M* satisfies the Serre's condition (S_n) if depth_{R_p} $M_p \ge \min\{n, \dim R_p\}$ for each prime ideal \mathfrak{p} of *R*. We denote by $(S_n)(R)$ the class of modules which satisfies (S_n) -condition.

We say that R satisfies the condition (G_n^C) if injective dimension of $C_{\mathfrak{p}}$ (as an $R_{\mathfrak{p}}$ -module) is finite for all prime ideal \mathfrak{p} of height at most n. In this case, $R_{\mathfrak{p}}$ is Cohen-Macaulay local ring with canonical module $C_{\mathfrak{p}}$ for all prime ideal \mathfrak{p} of height at most n. Note that Rsatisfies (G_n^R) if and only if $R_{\mathfrak{p}}$ is Gorenstein local ring for all prime ideal \mathfrak{p} of height at most n.

3. Proofs

In this section, we give a proof of the Proposition 1 and the Theorem 2.

Proof of Proposition 1.

 $(1) \Rightarrow (2)$. We prove by induction on n. We assume n = 1. Let $f : \mathbb{R}^r \to M^{\dagger}$ be a left add \mathbb{R} -approximation of M. Then f is epimorphism. Since M is 1-C-torsionfree, λ_M is monomorphism and so is $f^{\dagger}\lambda_M : M \to M^{\dagger\dagger} \to (\mathbb{R}^r)^{\dagger} = \mathbb{C}^r$. One can check $(f^{\dagger}\lambda_M)^{\dagger} = f$.

Assume $n \ge 2$. Since M is 1-C-torsionfree, there exists a short exact sequence $0 \to M \to P_C^1 \to N \to 0$ such that the daggar dual sequence $0 \to N^{\dagger} \to (P_C^1)^{\dagger} \to M^{\dagger} \to 0$ is exact. Then we have a following commutative diagram:

Since $\operatorname{Ext}_R^i(N^{\dagger}, C) \cong \operatorname{Ext}_R^{i+1}(M^{\dagger}, C)$ for each i > 0, N is (n-1)-C-torsionfree. By induction assumption, there exists a exact sequence $0 \to N \to P_C^2 \to \cdots \to P_C^n$ such that the daggar dual sequence $(P_C^n)^{\dagger} \to \cdots \to (P_C^2)^{\dagger} \to N^{\dagger} \to 0$ is exact. Conbining exact sequences, we get an exact sequence $0 \to M \to P_C^1 \to P_C^2 \to \cdots \to P_C^n$ such that the daggar dual sequence $(P_C^n)^{\dagger} \to \cdots \to (P_C^1)^{\dagger} \to M^{\dagger} \to 0$ is exact.

The implication $(2) \Rightarrow (3)$ is obvious by the definition.

Since depth_{$R_{\mathfrak{p}}$} $C_{\mathfrak{p}} = \text{depth}_{R_{\mathfrak{p}}}R_{\mathfrak{p}}$ for all prime ideal \mathfrak{p} , C satisfies (S_n) . Thus one can check the implication $(3) \Rightarrow (4)$ by using depth lemma.

We prove the implication $(4) \Rightarrow (1)$ by induction n. Assume n = 1. Let \mathfrak{p} be an associated prime ideal of M. Since M satisfies the condition (S_1) , we have dim $R_{\mathfrak{p}} = 0$. Furthermore, the assumption that R satisfies (G_0^C) implies that $C_{\mathfrak{p}}$ is a dualizing module and that $\operatorname{Hom}_R(M, C)_{\mathfrak{p}} \cong \operatorname{Hom}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, C_{\mathfrak{p}}) \neq 0$. In particular, $\operatorname{Hom}_R(M, C) \neq 0$.

Let f_1, f_2, \ldots, f_m be a generating system of $\operatorname{Hom}(M, C)$ and put $f = {}^t(f_1, f_2, \ldots, f_m) : M \to C^{\oplus m}$. Suppose that $N = \ker f$ is not zero. Let \mathfrak{q} be an associated prime ideal of N. Since \mathfrak{q} is also an associated prime ideal of M, we have dim $R_{\mathfrak{q}} = 0$. Noting that $C_{\mathfrak{q}}$ is dualizing module over $R_{\mathfrak{q}}$, we see that $f_{\mathfrak{q}}$ is a monomorphism. This yields that $N_{\mathfrak{q}} = 0$. This contradicts that \mathfrak{q} is an associated prime ideal of N. Hence f is a monomorphism.

Since $f^{\dagger\dagger}\lambda_M = \lambda_{C^{\oplus m}}f$ is a monomorphism, we obtain that λ_M is a monomorphism. This means that M is 1-C-torsionfree by Proposition 3.

Assume $n \geq 2$. Since M satisfies the condition (S_1) , M is 1-C-torsionfree. In particular, there exists a short exact sequence $0 \to M \to P_C \to N \to 0$ such that the daggar dual sequence $0 \to N^{\dagger} \to (P_C)^{\dagger} \to M^{\dagger} \to 0$ is exact. Then we get a following commutative diagram:

Note that $\operatorname{Ext}_{R}^{i}(N^{\dagger}, C) \cong \operatorname{Ext}_{R}^{i+1}(M^{\dagger}, C)$ for each i > 0. It is enough to prove that N satisfies the condition (S_{n-1}) . Indeed, if N satisfies the condition (S_{n-1}) , N is (n-1)-C-torsionfree by induction assumption. Then we can show that M is n-C-torsionfree by the above commutative diagram.

From now on, we shall show that N satisfies the condition (S_{n-1}) . Let \mathfrak{p} be a prime ideal. If dim $R_{\mathfrak{p}} \geq n$, we have depth_{$R_{\mathfrak{p}}$} $M_{\mathfrak{p}} \geq \min\{n, \dim R_{\mathfrak{p}}\} = n$. Therefore we obtain depth_{$R_{\mathfrak{p}}$} $N_{\mathfrak{p}} \geq n-1$ by depth lemma.

Assume dim $R_{\mathfrak{p}} \leq n-1$. Since R satisfies the condition $(G_{n-1}^{\mathbb{C}})$, $R_{\mathfrak{p}}$ is Cohen-Macaulay with canonical module $C_{\mathfrak{p}}$. Inequalities depth_{$R_{\mathfrak{p}}$} $M_{\mathfrak{p}} \geq \min\{n, \dim R_{\mathfrak{p}}\} = \dim R_{\mathfrak{p}} =$ depth_{$R_{\mathfrak{p}}$} $R_{\mathfrak{p}}$ gives that $M_{\mathfrak{p}}$ is a maximal Cohen-Macaulay $R_{\mathfrak{p}}$ -module. Thus so are $(M_{\mathfrak{p}})^{\dagger_{\mathfrak{p}}}$, $R_{\mathfrak{p}}$ and $(N_{\mathfrak{p}})^{\dagger_{\mathfrak{p}}}$. It comes from a commutative diagram:

we can see that $\lambda_{N_{\mathfrak{p}}}$ is an isomorphism and that $N_{\mathfrak{p}} \cong (N_{\mathfrak{p}})^{\dagger_{\mathfrak{p}}\dagger_{\mathfrak{p}}}$ is a maximal Cohen-Macaulay $R_{\mathfrak{p}}$ -module. Therefore we have $\operatorname{depth}_{R_{\mathfrak{p}}}N_{\mathfrak{p}} = \dim R_{\mathfrak{p}} \ge \min\{n-1, \dim R_{\mathfrak{p}}\}$. Thus N satisfies the condition (S_{n-1}) .

Now, we can prove the Main theorem.

Proof of Theorem 2.

 $(1) \Rightarrow (2)$ It is obvious by Proposition 1.

(2) \Rightarrow (3) A dualizing module ω satisfies the Serre's condition (S_n) , so we have $\omega \in \Omega_C^n($ mod R).

 $(3) \Rightarrow (1)$ There is an exact sequence

$$0 \to \omega \to P_C^1 \to P_C^2 \to \dots \to P_C^n \to M \to 0$$

such that each P_C^i is a direct summand of direct sum of finite copy of C. For any prime ideal \mathfrak{p} of height less than n, $(\Omega_C^{n-1}M)_{\mathfrak{p}}$ is a maximal Cohen-Macaulay $R_{\mathfrak{p}}$ -module. Then the exact sequence $0 \to \omega_{\mathfrak{p}} \to (P_C^1)_{\mathfrak{p}} \to (\Omega_C^{n-1}M)_{\mathfrak{p}} \to 0$ splits. This indicates $\omega_{\mathfrak{p}} \cong C_{\mathfrak{p}}$. Thus we have $\mathrm{id}_{R_{\mathfrak{p}}} C_{\mathfrak{p}} = \mathrm{id}_{R_{\mathfrak{p}}} \omega_{\mathfrak{p}} < \infty$.

4. EXAMPLE

Jorgensen, Leuschke and Sather-Wagstaff [4] have been determined the structure of rings which admits non-trivial semidualizing modules.

We give a class of Cohen-Macaulay local rings R which have a non-trivial semidualizing module C by using their result. Moreover, $C_{\mathfrak{p}}$ is a dualizing $R_{\mathfrak{p}}$ -module for all non-maximal prime ideal \mathfrak{p} of R.

Proposition 4. Let k be a field and $S = k[[x_1, x_2, \ldots, x_m, y_1, y_2]]$ be a formal power series ring. For $f_1, f_2, \ldots, f_r \in k[[x_1, x_2, \ldots, x_m]]$ and $\ell \ge 2$, we set ideals $I_1 = (f_1, f_2, \ldots, f_r)S$ and $I_2 = (y_1, y_2)^{\ell}S$. Assume that $T = S/I_1$ is a (d+2)-dimensional Cohen-Macaulay ring which is not Gorenstein and that T satisfies the condition (G_{n+2}^T) . Putting $R = T/I_2$ and $C = \text{Ext}_T^2(R, T)$, then the followings hold:

- (1) R is d-dimensional Cohen-Macaulay ring,
- (2) C is neither R nor dualizing R-module,
- (3) R satisfies the condition (G_n^C) .

Proof. (1) is clear. (2) is comes from [4]. We show (3). Let \mathfrak{p} be a prime ideal of R with height at most n. Since $P = \mathfrak{p}S$ is a prime ideal of S with height at most n + 2, we have that $S_{\mathfrak{p}} = S_P$ is Gorenstein. Therefore $C_{\mathfrak{p}} = \operatorname{Ext}_{S_P}^2(R_{\mathfrak{p}}, S_P)$ is a canonical $R_{\mathfrak{p}}$ -module. \Box

In the end of this article, we give examples of 1-dimensional Cohen-Macaulay rings R and semidualizing module C such that R satisfies the condition (G_0^C) but not the condition (G_n^R) for all n.

Example 5. Let k be a field and let $S = k[[x_1, x_2, x_3, y_1, y_2]]/(x_2^2 - x_1x_3, x_2x_3, x_3^2)$ be a 3-dimensional Cohen-Macaulay local ring which is not Gorenstein. We set $R = S/(y_1^2, y_1y_2, y_2^2)$ which is a 1-dimensional Cohen-Macaulay local ring. Note that all the prime ideals of R are $\mathfrak{p} = (x_2, x_3, y_1, y_2)$ and $\mathfrak{m} = (x_1, x_2, x_3, y_1, y_2)$. It is easy to see that $S_{\mathfrak{p}}$ is Gorenstein but $R_{\mathfrak{p}}$ is not Gorenstein. In particular, R does not satisfy the condition (G_0^R) . Putting $C = \operatorname{Ext}_S^2(R, S)$, one can check that C is a semidualizing R-module which is neither R nor canonical module. Since $S_{\mathfrak{p}}$ is Gorenstein, we can see that $C_{\mathfrak{p}}$ is a canonical module over $R_{\mathfrak{p}}$. This yield that R satisfy the condition (G_0^C) .

References

- M. Auslander; M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969.
- [2] M. T. Dibaei; A Sadeghi, Linkage of modules and the Serre conditions, preprint (2014), http://arxiv.org/abs/1407.6544
- [3] E. G. Evans; P. Griffith, Syzygies, London mathematical Society Lecture Note Series, 106, Cambridge University Press, Cambridge, 1985.
- [4] D. A. Jorgensen; G. J. Leuschke; S. Sather-Wagstaff, Presentations of rings with non-trivial semidualizing modules, Collect. Math. 63 (2012), 165–180.
- [5] G. J. Leuschke; R. Wiegand, Ascent of finite Cohen-Macaulay type, J. Algebra 228 (2000), no. 2, 674–681.
- [6] R. Takahashi, A new approximation theory which unifies spherical and Cohen-Macaulay approximations, Journal of Pure and Applied Algebra 208 (2007), 617–634.

DEPARTMENT OF APPLIED SCIENCE, FACULTY OF SCIENCE, OKAYAMA UNIVERSITY OF SCIENCE, RIDAICHO, KITAKU, OKAYAMA 700-0005, JAPAN. *E-mail address*: araya@das.ous.ac.jp

DEPARTMENT OF LIBERAL STUDIES, NATIONAL INSTITUTE OF TECHNOLOGY, NARA COLLEGE, 22 YATA-CHO, YAMATOKORIYAMA, NARA 639-1080, JAPAN. *E-mail address*: iima@libe.nara-k.ac.jp