TILTED ALGEBRAS AND CONFIGURATIONS OF SELF-INJECTIVE ALGEBRAS OF DYNKIN TYPE

HIDETO ASASHIBA AND KEN NAKASHIMA

Abstract. All algebras are assumed to be basic, connected finite-dimensional algebras over an algebraically closed field. We give an easier way to calculate a bijection from the set of isoclasses of tilted algebras of Dynkin type Δ to the set of configurations on the translation quiver $Z\Delta$.

Introduction

This work is a generalization of Hironobu Suzuki’s Master thesis [7] that dealt with representation-finite self-injective algebras of type A in a combinatorial way. Throughout this paper n is a positive integer and k is an algebraically closed field, and all algebras considered here are assumed to be basic, connected, finite-dimensional associative k-algebras.

Let Δ be a Dynkin graph of type A, D, E with the set $\Delta_0 := \{1, \ldots, n\}$ of vertices. We set C_n to be the set of configurations on the translation quiver $Z\Delta$ (see Definition 1.6), and T_n to be the set of isoclasses of tilted algebras of type Δ. Then Bretscher, Läser and Riedtmann have given a bijection $c: T_n \rightarrow C_n$ in [1]. But the map c is not given in a direct way, it needs a long computation of a function on $Z\Delta$. In this paper we will give an easier way to calculate the map c by giving a map sending each projective A-module over a tilted algebra A in T_n to an element of the configuration $c(A)$.

We fix an orientation of each Dynkin graph Δ to have a quiver $\vec{\Delta}$ as in the following table.

<table>
<thead>
<tr>
<th>Δ</th>
<th>$A_n \ (n \geq 1)$</th>
<th>$D_n \ (n \geq 4)$</th>
<th>$E_n \ (n = 6, 7, 8)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{\Delta}$</td>
<td>$\circ \circ \cdots \circ$</td>
<td>$\circ \circ \cdots \circ$</td>
<td>$\circ \circ \cdots \circ$</td>
</tr>
<tr>
<td>m_{Δ}</td>
<td>n</td>
<td>$2n - 3$</td>
<td>$11, 17, 29$, respectively</td>
</tr>
</tbody>
</table>

This orientation of Δ gives us a coordinate system on the set $(Z\Delta)_0 := Z \times \Delta_0$ of vertices of $Z\Delta := Z\vec{\Delta}$ as presented in [1, fig. 1] and in [3, Fig. 13], and by definition the full subquiver S of $Z\Delta$ consisting of $\{(0, i) \mid i \in \Delta_0\}$ is isomorphic to $\vec{\Delta}$.

Let A be a tilted algebra of type Δ. Then by identify A with the $(0,0)$-entry of the repetitive category \hat{A}, the vertex set of AR-quiver Γ_A is embedded into the vertex set of the stable AR-quiver $s\Gamma_A$ ($\cong Z\Delta$) of \hat{A}. Further the configuration $C := c(A)$ of $Z\Delta$ computed in [1] is given by the vertices of $Z\Delta$ corresponding to radicals of projective A-modules.

The detailed version of this paper will be submitted for publication elsewhere.
indecomposable \(\hat{A}\)-modules. Note that the configuration \(C\) has a period \(m_\Delta\) listed in the table, thus \(\mathcal{C} = \tau^{m_\Delta Z}\mathcal{F}\) for some subset \(\mathcal{F}\) of \(\mathcal{C}\). By \(\mathcal{P} = \{(p(i), i) \mid i \in \Delta_0\}\) we denote the set of images of the projective vertices of \(\Gamma_A\) in \(Z\Delta\) and set
\[
\mathbb{N}\mathcal{P} := \{(m, i) \in (Z\Delta)_0 \mid p(i) \leq m, i \in \Delta_0\}.
\]
Since the mesh category \(k(Z\Delta)\) is a Frobenius category, it has the Nakayama permutation \(\hat{\nu}\) on \((Z\Delta)_0\) that is defined by the isomorphism
\[
k(Z\Delta)(x, -) \cong \text{Hom}_k(k(Z\Delta)(-, \hat{\nu}x), k)
\]
for all \(x \in (Z\Delta)_0\). The explicit formula of \(\hat{\nu}\) is given in [3, pp. 48–50]. (Note that it should be corrected as \(\hat{\nu}(p, q) = (p + q + 2, 6 - q)\) if \(q \leq 5\) when \(\Delta = E_6\) as pointed out in [1, 1.1]). In this paper we will define a map \(\nu' : \mathcal{P} \to \mathbb{N}\mathcal{P}\) using the supports of starting functions \(\text{dim}_k k(Z\Delta)(x, -) : \mathbb{N}\mathcal{P} \to \mathbb{Z}\) for \(x \in \mathbb{N}\mathcal{P}\) (cf. [3, Fig. 15]). Then \(\nu'\) has the following property.

Lemma 0.1. Let \(x \in \mathcal{P}\) and \(P\) be the projective indecomposable \(A\)-module corresponding to \(x\). Then \(\nu'x\) corresponds to the simple module \(\text{top} P\).

In this paper, we make use of modules over the algebra
\[
B := \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}
\]
to compute an \(\mathcal{F}\) above (the configuration (see Definition 3.9) of \(B\) gives \(\mathcal{F}\).) We will define a map \(\nu := \nu_B\) from the set of isoclasses of simple \(A\)-modules to \(\mathcal{C}\), which coincides with the restriction of the Nakayama permutation \(\hat{\nu}\) if \(A\) is hereditary.

Lemma 0.2. Assume that a vertex \(x \in Z\Delta\) corresponds to a simple \(A\)-module \(S\) and let \(Q\) be the injective hull of \(S\) over \(\hat{A}\). Then \(\nu(x)\) corresponds to \(\text{rad} Q\), and hence \(\nu(x) \in \mathcal{C}\).

Combining the lemmas above we obtain the following.

Proposition 0.3. If \(x \in \mathcal{P}\), then \(\nu(\nu'x) \in \mathcal{C}\).

This leads us to the following definition.

Definition 0.4. We define a map \(c_A : \mathcal{P} \to \mathcal{C}\) by \(c_A(x) := \nu(\nu'x)\) for all \(x \in \mathcal{P}\).

The image of the map \(c_A\) gives us an \(\mathcal{F}\) above, namely we have the following.

Theorem 0.5. The map \(c_A\) is an injection, and we have \(c(A) = \tau^{m_\Delta Z}\text{Im} c_A\).

Corollary 0.6. If \(A\) is hereditary, then \(c_A = \hat{\nu}\nu'\) and we have \(c(A) = \tau^{m_\Delta Z}\text{Im} \hat{\nu}\nu'\).

Section 1 is devoted to preparations. In Section 2 we will give the complete list of indecomposable projectives and indecomposable injectives over the triangular matrix algebra \(B\). In Section 3 we state our main results.
1. Preliminaries

1.1. Algebras and categories. A category \mathcal{C} is called a k-category if the morphism sets $\mathcal{C}(x, y)$ are k-vector spaces, and the compositions $\mathcal{C}(y, z) \times \mathcal{C}(x, y) \to \mathcal{C}(x, z)$ are k-bilinear for all $x, y, z \in \mathcal{C}_0$ (\mathcal{C}_0 is the class of objects of \mathcal{C}, we sometimes write $x \in \mathcal{C}$ for $x \in \mathcal{C}_0$). In the sequel all categories are assumed to be k-categories unless otherwise stated.

To construct repetitive categories and to make use of a covering theory we need to extend the range of considerations from algebras to categories. First we regard an algebra as a special type of categories by constructing a category $\text{cat} \ A$ from an algebra A as follows.

1. We fix a decomposition $1 = e_1 + \cdots + e_n$ of the identity element 1 of A as a sum of orthogonal primitive idempotents.
2. We set the object class of $\text{cat} \ A$ to be the set $\{e_1, \ldots, e_n\}$.
3. For each pair (e_i, e_j) of objects, we set $(\text{cat} \ A)(e_i, e_j) := e_j A e_i$.
4. We define the composition of $\text{cat} \ A$ by the multiplication of A.

The obtained category $\text{cat} \ A$ is uniquely determined up to isomorphisms not depending on the decomposition of 1. The category $C = \text{cat} \ A$ is a small category having the following three properties.

1. Distinct objects are not isomorphic.
2. For each object x of \mathcal{C} the algebra $\mathcal{C}(x, x)$ is local.
3. For each pair (x, y) of objects of \mathcal{C} the morphism space $\mathcal{C}(x, y)$ is finite-dimensional.

A small category with these three properties is called a spectroid and its objects are sometimes called points. A spectroid with only a finite number of points is called finite. Conversely we can construct a matrix algebra from a finite spectroid C as follows.

\[\text{alg} C := \{(m_{yx})_{x, y \in C} \mid m_{yx} \in \mathcal{C}(x, y), \forall x, y \in C\}. \]

Here we have $\text{alg} \ \text{cat} \ A \cong A$, $\text{cat} \ \text{alg} \ C \cong C$. Therefore we can identify the class of algebras and the class of finite spectroids by using cat and alg.

A spectroid C is called locally bounded if for each point x the set $\{y \in C \mid C(x, y) \neq 0 \text{ or } C(y, x) \neq 0\}$ is a finite set. Of course algebras (= finite spectroids) are locally bounded. In the range of locally bounded spectroids we can freely construct repetitive categories or consider coverings.

Remark 1.1. We can construct the “path-category” kQ from a locally finite quiver Q by the same way as in the definition of the path-algebra. The only different part is in the following definition of compositions: For paths μ, ν with $s(\mu) \neq t(\nu)$, it was defined as $\mu \nu = 0$ in the path-algebra, but in contrast the composition $\mu \nu$ is not defined in the path-category.

A locally bounded spectroid C is also presented as the form kQ/I for some locally finite quiver Q and for some ideal I of the path-category kQ such that I is included in the ideal

\[I = \{m_{yx} \mid m_{yx} \neq 0, x, y \in C\}. \]

Here $s(\mu)$ and $t(\nu)$ stand for the source of μ and the target of ν and compositions are written from the right to the left.

\[^1 \text{a terminology used in [4]} \]

\[^2 \text{Here } s(\mu) \text{ and } t(\nu) \text{ stand for the source of } \mu \text{ and the target of } \nu \text{ and compositions are written from the right to the left.} \]
of \(kQ \) generated by the set of paths of length 2. Here the quiver \(Q \) is uniquely determined by \(C \) up to isomorphisms. This \(Q \) is called the quiver of \(C \).

A (right) module over a spectroid \(C \) is a contravariant functor \(C \to \text{Mod} k \). From a usual (right) module over an algebra \(A \) we can construct a contravariant functor \(\text{cat} A \to \text{Mod} k \) by the correspondence \(e_i \to Me_i \) for each point \(e_i \) in cat \(A \), and \(f \to (f : Me_j \to Me_i) \) for each \(f \in e_j A e_i = (\text{cat} A)(e_i, e_j) \). Conversely, from a contravariant functor \(F : \text{cat} A \to \text{Mod} k \) we can construct an \(A \)-module \(\bigoplus_{i=1}^n F(e_i) \); and these constructions are inverse to each other. In this way we can identify \(A \)-modules and modules over cat \(A \).

The set of projective indecomposable modules over a spectroid \(C \) is given by \(\{C(\nu, x)\}_{x \in C} \) up to isomorphism, and finitely generated projective \(C \)-modules are nothing but finite direct sums of these. Using this we can define finitely generated modules or finitely presented modules over \(C \) by the same way as those over algebras.

The dimension of a \(C \)-module \(M \) is defined to be the dimension of \(\bigoplus_{x \in C} M(x) \). When \(C \) is locally bounded, a \(C \)-module is finitely presented if and only if it is finitely generated if and only if it is finite-dimensional.

1.2. Repetitive category.

Definition 1.2. Let \(A \) be an algebra with a basic set of local idempotents \(\{e_1, \ldots, e_n\} \).

1. The repetitive category \(\hat{A} \) of \(A \) is a spectroid defined as follows.
 - **Objects:** \(\hat{A}_0 := \{x[i] := (x, i) \mid x \in \{e_1, \ldots, e_n\}, i \in \mathbb{Z}\} \).
 - **Morphisms:** Let \(x[i], y[j] \in \hat{A}_0 \). Then we set
 \[
 \hat{A}(x[i], y[j]) := \begin{cases}
 \{f[i] := (f, i) \mid f \in A(x, y)\} & (j = i) \\
 \{\varphi[i] := (\varphi, i) \mid \varphi \in \text{DA}(y, x)\} & (j = i + 1) \\
 0 & \text{otherwise},
 \end{cases}
 \]
 - **Compositions:** The composition \(\hat{A}(y[i], z[k]) \times \hat{A}(x[i], y[j]) \to \hat{A}(x[i], z[k]) \) is defined as follows.
 - (i) If \(j = i, k = j \), then we use the composition of \(A \):
 \[A(y, z) \times A(x, y) \to A(x, z). \]
 - (ii) If \(j = i, k = j + 1 \), then we use the right \(A \)-module structure of \(\text{DA}(-, ?) \):
 \[DA(z, y) \times A(x, y) \to DA(z, x). \]
 - (iii) If \(j = i + 1, k = j \), then we use the left \(A \)-module structure of \(\text{DA}(-, ?) \):
 \[A(y, z) \times DA(y, x) \to DA(z, x). \]
 - (iv) Otherwise the composition is zero.

2. For each \(i \in \mathbb{Z} \), we denote by \(A[i] \) the full subcategory of \(\hat{A} \) whose object class is \(\{x[i] \mid x \in \{e_1, \ldots, e_n\}\} \).

3. We define the Nakayama automorphism \(\nu_A \) of \(\hat{A} \) as follows: for each \(i \in \mathbb{Z}, x, y \in A, f \in A(x, y) \) and \(\phi \in \text{DA}(y, x) \),
 \[
 \nu_A(x[i]) := x[i+1], \nu_A(f[i]) := f[i+1], \nu_A(\varphi[i]) := \varphi[i+1].
 \]
Remark 1.3. (1) If a spectroid A is locally bounded, then so is \hat{A}.

(2) When A is an algebra, the set of all $\mathbb{Z} \times \mathbb{Z}$-matrices with only a finite number of nonzero entries whose diagonal entries belong to A, $(i + 1, i)$ entries belong to DA for all $i \in \mathbb{Z}$, and other entries are zero forms an infinite-dimensional algebra without identity element, which is called the repetitive algebra of A. The repetitive category \hat{A} is nothing but this repetitive algebra regarded as a spectroid in a similar way. This is not an algebra (= a finite spectroid) any more, but a locally bounded spectroid.

Definition 1.4 (Gabriel [2]). Let C be a locally bounded spectroid with a free3 action of a group G. Then we define the orbit category C/G of C by G as follows.

(1) The objects of C/G are the G-orbits Gx of objects x of C.
(2) For each pair Gx, Gy of objects of C/G we set

$$(C/G)(Gx, Gy) := \left\{ (bfa)_{a,b} \in \prod_{(a,b) \in Gx \times Gy} C(a,b) \mid gbfa = g(bfa), \text{ for all } g \in G \right\}.$$

(3) The composition is defined by

$$(dhc)_{c,d} \cdot (bfa)_{a,b} := \left(\sum_{b \in Gy} dhb \cdot bfa \right)_{a,d}$$

for all $(bfa)_{a,b} \in (C/G)(Gx, Gy), (dhc)_{c,d} \in (C/G)(Gy, Gz)$. Note that each entry of the right hand side is a finite sum because C is locally bounded.

A functor $F: C \to C'$ is called a Galois covering with group G if it is isomorphic to the canonical functor $\pi: C \to C/G$, namely if there exists an isomorphism $H: C/G \to C'$ such that $F = H\pi$.

Remark 1.5. If A is an algebra and a group G acts freely on the category \hat{A}, then \hat{A}/G turns out to be a self-injective spectroid. In particular, when \hat{A}/G is a finite spectroid, it becomes a self-injective algebra. In this way we can construct a great number of self-injective algebras.

Definition 1.6. From a quiver Q we can construct a translation quiver ZQ as follows.

• $(ZQ)_0 := \mathbb{Z} \times Q_0$,
• $(ZQ)_1 := \mathbb{Z} \times Q_1 \cup \{(i, \alpha') \mid i \in \mathbb{Z}, \alpha \in Q_1\}$,
• We define the sources and the targets of arrows by

$$(i, \alpha): (i, s(\alpha)) \to (i, t(\alpha)), (i, \alpha'): (i, t(\alpha)) \to (i+1, s(\alpha))$$

for all $(i, \alpha) \in \mathbb{Z} \times Q_1$.
• We take the bijection $\tau: (ZQ)_0 \to (ZQ)_0, (i, x) \mapsto (i - 1, x)$ as the translation.

In addition, we can define a polarization by $(i + 1, \alpha) \mapsto (i, \alpha'), (i, \alpha') \mapsto (i, \alpha)$. Note that by construction the translation quiver ZQ does not have any projective or injective vertices.

$^3g \neq x \in Q_0$ implies $gx \neq x$
Proposition 2.2. \(Z \) does not depend on orientations of \(\Delta \), therefore we set \(Z \).

Remark 1.7. When \(Q \) is a Dynkin quiver with the underlying graph \(\Delta \), the isoclass of \(ZQ \) does not depend on orientations of \(\Delta \), therefore we set \(Z\Delta := ZQ \).

2. TRIANGULAR MATRIX ALGEBRAS

Definition 2.1. Let \(R \) and \(S \) be algebras, \(M \) be an \(S-R \)-bimodule. We define a category \(\mathcal{C} = \mathcal{C}(R, S, M) \) as follows.

- **Objects:** \(\mathcal{C}_0 := \{ (X, Y, f) \mid X_R \in \text{mod} R, Y_S \in \text{mod} S, f \in \text{Hom}_{A}(Y \otimes_{S} M, X) \} \).

- **Morphisms:** Let \((X, Y, f), (X', Y', f') \in \mathcal{C}_0\). Then we set
 \[
 \mathcal{C}((X, Y, f), (X', Y', f')) := \left\{ (\phi_0, \phi_1) \in \text{Hom}_{R}(X, X') \times \text{Hom}_{S}(Y, Y') \mid \begin{array}{c}
Y \otimes_{S} M \xrightarrow{f} X \\
\phi_1 \otimes 1_M \rightarrow \phi_0
\end{array} \right\}.
 \]

- **Compositions:** Let \((X, Y, f), (X', Y', f'), (X'', Y'', f'') \in \mathcal{C}_0\) and let
 \[(\phi_0, \phi_1) \in \mathcal{C}((X, Y, f), (X', Y', f')), (\phi'_0, \phi'_1) \in \mathcal{C}((X', Y', f'), (X'', Y'', f'')).\]
 Then we set
 \[(\phi'_0, \phi'_1)(\phi_0, \phi_1) := (\phi'_0 \phi_0, \phi'_1 \phi_1) \in \mathcal{C}((X, Y, f), (X'', Y'', f'')).\]

Then the following is well known.

Proposition 2.2. Let \(R \) and \(S \) be algebras, \(M \) be an \(S-R \)-bimodule. Then
 \[
 \text{mod} \begin{bmatrix} R & 0 \\ M & S \end{bmatrix} \simeq \mathcal{C}(R, S, M).
 \]

Recall that an equivalence \(F : \text{mod} \begin{bmatrix} R & 0 \\ M & S \end{bmatrix} \rightarrow \mathcal{C}(R, S, M) \) is given as follows.

- **Objects:** For each \(L \in (\text{mod} T)_0 \),
 \[
 F(L) := (L \varepsilon_1, L \varepsilon_2, f_L),
 \]
 where \(\varepsilon_1 := \begin{bmatrix} 1_R & 0 \\ 0 & 0 \end{bmatrix}, \varepsilon_2 := \begin{bmatrix} 0 & 0 \\ 0 & 1_S \end{bmatrix} \) and \(f_L : L \varepsilon_2 \otimes_S M \rightarrow L \varepsilon_1 \) is defined by
 \[
 f_L(l \varepsilon_2 \otimes m) := \begin{bmatrix} 0 \\ m \end{bmatrix} \]
 for all \(l \in L \) and \(m \in M \).

- **Morphisms:** For each \(\alpha \in \text{Hom}_T(L, L') \),
 \[
 F(\alpha) := (\alpha \big|_{L \varepsilon_1}, \alpha \big|_{L \varepsilon_2}).
 \]
Let A be a tilted algebra of type Δ, and set $B := \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}$, $C := C(A, A, DA)$.

Then we have $\text{mod } B \simeq C$ by Proposition 2.2. By this equivalence, we identify $\text{mod } B$ with C.

Let $\{e_1, \ldots, e_n\}$ be a complete set of orthogonal local idempotents of A. Then as is easily seen $\{e_1, \ldots, e_n, e_1^{[0]}, \ldots, e_1^{[1]}, \ldots, e_n^{[0]}, e_n^{[1]}, \ldots, e_n^{[1]}\}$ is a complete set of orthogonal local idempotents of B, and $\{e_1^{[0]}B, \ldots, e_n^{[0]}B, e_1^{[1]}B, \ldots, e_n^{[1]}B\}$ is a complete set of isoclasses of projective indecomposable B-modules. The following is immediate.

Proposition 2.3. For each $i = 1, \ldots, n$, we have
\[
F(e_i^{[0]}B) \cong (e_iA, 0, 0),
\]
\[
F(e_i^{[1]}B) \cong (e_i(DA), e_iA, \text{can}).
\]

In addition $\{D(Be_1^{[0]}), \ldots, D(Be_n^{[0]}), D(Be_1^{[1]}), \ldots, D(Be_n^{[1]})\}$ is a complete set of isoclasses of injective indecomposable B-modules. The following two statements are obvious.

Lemma 2.4. For each $i = 1, \ldots, n$, we have

(1) $D \begin{bmatrix} Ae_i \\ (DA)e_i \end{bmatrix} \cong \begin{bmatrix} 0 \\ D(Ae_i) \end{bmatrix}$, and

(2) $D \begin{bmatrix} 0 & 0 \\ 0 & Ae_i \end{bmatrix} \cong \begin{bmatrix} 0 & 0 \\ 0 & D(Ae_i) \end{bmatrix}$.

Proposition 2.5. For each $i = 1, \ldots, n$, we have
\[
F(D(Be_i^{[0]})) \cong (e_i(DA), e_iA, \text{can}) \cong e_i^{[1]}B,
\]
\[
F(D(Be_i^{[1]})) \cong (0, e_i(DA), 0).
\]

3. Configurations

Definition 3.1. Let Λ be a standard representation-finite self-injective algebra. Then we set
\[
C_{\Lambda} := \{ [\text{rad } P] \in \Gamma_{\Lambda} \mid P : \text{projective(-injective) } \Lambda\text{-module} \},
\]
which is called a configuration of Λ.

Definition 3.2. Let Γ be a stable translation quiver, and C be a subset of Γ_0. Then we define a translation quiver Γ_C by
\[
(\Gamma_C)_0 := \Gamma_0 \cup \{ p_x \mid x \in C \},
\]
\[
(\Gamma_C)_1 := \Gamma_1 \cup \{ x \rightarrow p_x, \ p_x \rightarrow \tau^{-1}x \},
\]
where the translation of Γ_C is the same as that of Γ. In particular, p_x are projective-injective\(^4\) vertices for all $x \in C$.

\(^4\)The word “projective-injective” stands for projective and injective.
Remark 3.3. The quiver of \(\text{mod} \Lambda \) is the full subquiver \(s\Gamma_\Lambda \) of \(\Gamma_\Lambda \) with
\[
(s\Gamma_\Lambda)_0 := \{ x \mid x \text{ is a stable vertex of } \Gamma_\Lambda \}
\]
(namely \(s\Gamma_\Lambda \) is obtained from \(\Gamma_\Lambda \) by removing all projective vertices), which is a stable translation quiver. Then it holds that \(\mathcal{C}_\Lambda \subseteq (s\Gamma_\Lambda)_0 \), and we have
\[
(s\Gamma_\Lambda)_{\mathcal{C}_\Lambda} \cong \Gamma_\Lambda. \tag{3.1}
\]

Theorem 3.4. Let \(\Lambda \) be a standard representation-finite self-injective algebra and \(\Delta \) the Dynkin type of \(\Lambda \). Then the following hold.

1. (Waschb"{u}sch [5, 8]) There exist a tilted algebra \(A \) of type \(\Delta \) and an automorphism \(\phi \) of \(\hat{A} \) without fixed vertices such that \(\Lambda \cong \hat{A}/\langle \phi \rangle \).
2. (Riedtmann [6]) There is an isomorphism \(f : s\Gamma_{\hat{A}} \rightarrow \mathbb{Z}\Delta \). Denote also by \(\phi \) the automorphism of \(s\Gamma_{\hat{A}} \) induced from \(\phi \) canonically, and define an automorphism \(\phi' \) of \(\mathbb{Z}\Delta \) by the following commutative diagram:

\[
\begin{array}{ccc}
s\Gamma_{\hat{A}} & \xrightarrow{f} & \mathbb{Z}\Delta \\
\phi \downarrow & & \phi' \downarrow \\
s\Gamma_{\hat{A}} & \xrightarrow{f} & \mathbb{Z}\Delta.
\end{array}
\]

Then we have \(s\Gamma_\Lambda \cong s\Gamma_{\hat{A}}/\langle \phi \rangle \cong \mathbb{Z}\Delta/\langle \phi' \rangle \).

By the formula (3.1) to compute \(\Gamma_\Lambda \), it is enough to solve the following problem.

Problem 1. Let \(\Lambda \) be a standard representation-finite self-injective algebra, which has the form \(\hat{A}/\langle \phi \rangle \) for some tilted algebra \(A \) of Dynkin type and an automorphism \(\phi \) of \(\hat{A} \) by Theorem 3.4. Then compute \(\mathcal{C}_\Lambda \) from \(A \).

Remark 3.5. Let \(f' : s\Gamma_\Lambda \rightarrow \mathbb{Z}\Delta/\langle \phi' \rangle \) be an isomorphism, and set \(C := f'(\mathcal{C}_\Lambda) \). Then we have
\[
\Gamma_\Lambda \cong (s\Gamma_\Lambda)_{\mathcal{C}_\Lambda} \cong (\mathbb{Z}\Delta/\langle \phi' \rangle)_C.
\]
Thus we can compute \(\Gamma_\Lambda \) by Theorem 3.4(2) if we can obtain the set \(C \).

On the other hand, the following holds by [2, Theorem 3.6].

Theorem 3.6 (Gabriel). Let \(R \) be a locally representation-finite and locally bounded \(k \)-category, and \(G \) be a group consisting of automorphisms of \(R \) that acts freely on \(R \). Then the AR-quiver \(\Gamma_R \) of \(R \) has an induced \(G \)-action, and we have \(\Gamma_R/G \cong \Gamma_{R/G} \).

Definition 3.7. Let \(A \) be a tilted algebra of Dynkin type. Then we set
\[
\mathcal{C}_A := \{ \text{rad } P \in \Gamma_{\hat{A}} \mid P : \text{projective(-injective) } \hat{A}\text{-module} \},
\]
which is called the configuration of \(\hat{A} \).

Corollary 3.8. Let \(A \) be a tilted algebra of Dynkin type, and \(\phi \) be an automorphism of \(\hat{A} \) without fixed vertices. Then we have
\[
\mathcal{C}_A/\langle \phi \rangle \cong \mathcal{C}_\Lambda.
\]

Therefore to solve Problem 1, it is enough to consider the following.
Problem 2. In the same setting as in Problem 1, compute $C\hat{A}$ from A.

Throughout the rest of their section

(1) let A be a tilted algebra of Dynkin type Δ, and set
(2) $B := \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}$.

By (1), Γ_A has a section S whose underlying graph is isomorphic to Δ.

Definition 3.9. We call the following set the *configuration* of B:
$$C_B := \{ \text{rad } P \in \Gamma_B \mid P : \text{projective-injective } B\text{-module} \}.$$

3.1. **Relationship among \hat{A}, B and A.** We set as follows:

$$I_{0,1} = \langle e_i^j \mid i \in \mathbb{Z} \setminus \{0, 1\}, j \in \{1, \ldots, n\} \rangle,$$

$$I_0 = \langle e_i^j \mid i \in \mathbb{Z} \setminus \{0\}, j \in \{1, \ldots, n\} \rangle,$$

$$I_1 = \langle e_i^j \mid i \in \mathbb{Z} \setminus \{1\}, j \in \{1, \ldots, n\} \rangle.$$

Then $\hat{A}/I_{0,1} \cong B$, $\hat{A}/I_0 \cong A^{[0]}(\cong A)$ and $\hat{A}/I_1 \cong A^{[1]}(\cong A)$. We also have

$$B/ \begin{bmatrix} 0 & 0 \\ DA & 0 \end{bmatrix} \cong A^{[0]} \times A^{[1]}.$$

We have the following surjective algebra homomorphisms

$$\hat{A} \xymatrix{ \ar[r] & B \ar[r] & A^{[0]} \times A^{[1]} \ar[r] & A^{[1]}},$$

which induce the following embeddings of categories

$$\text{mod } A^{[0]} \xymatrix{ \ar[r]^-{\sigma} & \text{mod } B \ar[r] & \text{mod } A^{[1]}.}$$
We regard $\text{mod } A \subseteq \text{mod } B$ by the embedding $\text{mod } A = \text{mod } A^{[0]} \hookrightarrow \text{mod } B$. The embeddings above give us the following embeddings of vertex sets of AR-quivers:

$$\begin{array}{c}
(\Gamma^{[0]}_A)_0 = (\Gamma_A)_0 \\
(\Gamma^{[0]}_B)_0
\end{array}$$

We define an ideal $k(\mathbb{Z}\Delta)^+$ of the mesh category $k(\mathbb{Z}\Delta)$ as follows:

$$k(\mathbb{Z}\Delta)^+ := \bigoplus (\mathbb{Z}\Delta)_1 + I_{\mathbb{Z}\Delta}.$$

Then the values of $m_\Delta := \min \{m \in \mathbb{N} \mid (k(\mathbb{Z}\Delta)^+)_i = 0, \forall i \geq m\}$ are known as follows:

$$m_\Delta = \begin{cases}
 n & (\Delta = A_n) \\
 2n - 3 & (\Delta = D_n) \\
 11 & (\Delta = E_6) \\
 17 & (\Delta = E_7) \\
 29 & (\Delta = E_8)
\end{cases}$$

We see the following by [1].

Proposition 3.10. Let $i = 0, 1$.

1. The full subquiver $S^{[i]}_B$ of Γ_B with the vertex set $\sigma_i(S_0)$ forms a section of $\sigma \Gamma_B$.

2. The full subquiver $S^{[i]}_A$ of Γ_A with the vertex set $\sigma_i(S_0)$ forms a section of $\sigma \Gamma_A$.

Remark 3.11. A quiver Q without oriented cycles will be regarded as a poset by the order defined as follows:

For each $x, y \in Q_0$, $x \preceq y$ if and only if there is a path in Q from x to y.

Definition 3.12.

1. We set \mathcal{H}_B to be the full subquiver of Γ_B defined by the set

$$(\mathcal{H}_B)_0 := \{ x \in (\Gamma_B)_0 \mid a \preceq x \preceq b \text{ for some } a \in (S^{[0]}_B)_0, b \in (S^{[1]}_B)_0 \}$$

of vertices.

2. We set $\mathcal{H}^{[0,1]}_A$ to be the full subquiver of Γ_A defined by the set

$$(\mathcal{H}^{[0,1]}_A)_0 := \{ x \in (\Gamma_A)_0 \mid a \preceq x \preceq b \text{ for some } a \in (S^{[0]}_A)_0, b \in (S^{[1]}_A)_0 \}$$

of vertices.

Proposition 3.13.

1. The map $\sigma : (\Gamma_B)_0 \rightarrow (\Gamma_A)_0$ is uniquely extended to a quiver isomorphism $\mathcal{H}_B \rightarrow \mathcal{H}^{[0,1]}_A$.

2. We have $S^{[1]}_A = \tau^{-m_\Delta} S^{[0]}_A$. We set $S^{[n]}_A := \tau^{-nm_\Delta} S^{[0]}_A$ for all $n \in \mathbb{Z}$.
(3) Set $\mathcal{H}_A^{[n,n+1]} := \tau^{-nm}(\mathcal{H}_A^{[0,1]})$ for all $n \in \mathbb{Z}$. Then for each $i = 0, 1$

$$(\Gamma_A)_i = \bigcup_{n \in \mathbb{Z}} (\mathcal{H}_A^{[n,n+1]})_i$$

$$(S_A^{[n+1]})_i = (\mathcal{H}_A^{[n,n+1]})_i \cap (\mathcal{H}_A^{[n+1,n+2]})_i$$

Roughly speaking, Γ_A is obtained by connecting infinite copies of \mathcal{H}_B on both sides.

Example 3.14. Let A be the path algebra of the following quiver.

$$
\begin{array}{c}
1^{[0]} \longrightarrow 2^{[0]} \longrightarrow 3^{[0]} \\
\end{array}
$$

Then Γ_A is given as follows (double arrows present a section).

Therefore A is a tilted algebra of type A_3. Moreover $B = \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix} = \begin{bmatrix} A^{[0]} & 0 \\ (DA)^{[0]} & A^{[1]} \end{bmatrix}$ is an algebra given by following quiver with relations.

$$
\begin{array}{c}
1^{[0]} \longrightarrow 2^{[0]} \longrightarrow 3^{[0]} \\
\end{array}
$$
Then Γ_B is given as follows (elements of C_B are encircled).

In the above, H_B is given by the full subquiver consisting of vertices between the left section and the right section. A is given by the following quiver with relations.
Then Γ_A is follows (each element of C_A is encircled by a broken or solid line, in particular solid circles present elements of C_B). In this case we have $m_\Delta = 3$.

The following is immediate from Proposition 3.13.

Corollary 3.15. We have $C_A = \tau^{m_\Delta \sigma}(C_B)$.

By this corollary, Problem 2 is reduced to the following.

Problem 3. Let A be a tilted algebra of Dynkin type Δ, and B as above. Then give the configuration C_B from A.

The purpose of this section is to solve Problem 3.

Definition 3.16. (1) We define an ideal $\mathcal{P}I$ of mod B as follows and set $\tilde{\text{mod}} B := (\text{mod} B)/\mathcal{P}I$. For each $X, Y \in \text{mod} B_0$

$$\mathcal{P}I(X, Y) := \{ f \in \text{Hom}_B(X, Y) \mid f \text{ factors through a projective-injective } B\text{-module} \}$$

Let $(\tilde{\cdot}) : \text{mod} B \to \tilde{\text{mod}} B$ be the canonical functor and set

$$\tilde{\text{Hom}}_B(\tilde{X}, \tilde{Y}) := (\tilde{\text{mod}} B)(\tilde{X}, \tilde{Y})$$

for all $X, Y \in \text{mod} B$. Thus $\tilde{X} = X$ for all $X \in (\text{mod} B)_0$ and $\tilde{f} = f + \mathcal{P}I(X, Y)$ for all $f \in \text{Hom}_B(X, Y)$.

(2) We denote by $\text{mod}_{\mathcal{P}I} B$ the full subcategory of mod B consisting of B-modules without projective-injective direct summands.

(3) Let X and $Y \in \text{mod}_{\mathcal{P}I} B$. Then it is well known that $\mathcal{P}I(X, Y) \subseteq \text{rad}_B(X, Y)$. We set $\text{rad}_B(X, Y) := \text{rad}_B(X, Y)/\mathcal{P}I(X, Y)$.

Definition 3.17. For AR-quiver Γ_B of B, we define the full translation subquiver $\tilde{\Gamma}_B$ as follows.

$$(\tilde{\Gamma}_B)_0 := \{ X \in (\Gamma_B)_0 \mid X \text{ is not projective-injective} \}$$

Moreover we set

$$\text{supp}(s_X) := \{ Y \in (\tilde{\Gamma}_B)_0 \mid s_X(Y) \neq 0 \},$$
where the map \(s_X : (\tilde{\Gamma}_B)_0 \to \mathbb{Z}_{\geq 0} \) is defined by \(s_X(Y) := \dim \text{Hom}_B(\tilde{X}, \tilde{Y}) \) (\(Y \in (\tilde{\Gamma}_B)_0 \)) for all \(X \in (\tilde{\Gamma}_B)_0 \).

Definition 3.18. Let \(P \) be a projective indecomposable \(A \)-module, and \(\text{rad} P = \bigoplus_{i=1}^r R_i \) with \(R_i \) indecomposable for all \(i \). Then we define a full subquiver \(\mathcal{R}_P \) of \(\tilde{\Gamma}_B \) by

\[
(\mathcal{R}_P)_0 := \text{supp}(s_P) \setminus \left(\bigcup_{i=1}^r \text{supp}(s_{R_i}) \right).
\]

Definition 3.19. We regard the subquiver \(\mathcal{R}_P \) as a poset by Remark 3.11. For a projective indecomposable \(A \)-module \(P \), we set

\[
\nu'(P) := \min \mathcal{R}_P.
\]

Example 3.20. In the following figure, the vertices inside broken lines form \(\text{supp}(s_P) \) and those inside dotted lines form \(\left(\bigcup_{i=1}^r \text{supp}(s_{R_i}) \right) \). Therefore the subquiver \(\mathcal{R}_P \) consists of the vertices inside solid lines, and \(\nu'(P) \) is the minimum element of \(\mathcal{R}_P \). Projective vertices are presented by white circles \(\circ \).

We have the following the proof of which is omitted.

Proposition 3.21. Let \(P \) be a projective indecomposable \(A \)-module. then \(\nu'(P) \cong \text{top } P \).

We will give an alternative definition of the map \(\nu' \) below, which is easier to compute than the first one.

Definition 3.22. Let \(P \in \text{mod } B \) be projective.

(1) Let \(\mathcal{P}_P \) be the full subcategory of \(\text{mod } B \) consisting of projective modules \(Q \) such that \(P \) is not a direct summand of \(Q \).
(2) We define an ideal I_P of mod B and the factor category $\text{mod}^P B := \text{mod} B / I_P$ of mod B by setting

$$I_P(X,Y) := \{ f \in \text{Hom}_B(X,Y) \mid f \text{ factors through an object in } \mathcal{P}_P \},$$

and set

$$\text{Hom}^P_B(X,Y) := \text{Hom}_B(X,Y) / I_P(X,Y)$$

for all $X, Y \in \text{mod} B$. Let $\Phi : \text{mod} B \to \text{mod}^P B$ be the canonical functor. Thus $X = \hat{X}$ for all $X \in (\text{mod} B)_0$ and $\Phi f = f + I_P(X,Y)$ for all $f \in \text{Hom}_B(X,Y)$.

$$\text{supp}(s'_P) := \{ X \in (\hat{\Gamma} B)_0 \mid s'_P(X) \neq 0 \} \subseteq (\hat{\Gamma} B)_0$$

where the map $s'_P : (\hat{\Gamma} B)_0 \to \mathbb{Z}_{\geq 0}$ is defined by $s_P(X) := \dim \text{Hom}^P_B(P,X)$ ($X \in (\hat{\Gamma} B)_0$) for all $P \in (\hat{\Gamma} B)_0$.

The easier way to compute ν' is given by the following three statements, which we state without proofs.

Lemma 3.23. Let Q and X be in mod B. If Q is projective and there is an epimorphism $Q \to X$, then the projective cover of X is a direct summand of Q.

Lemma 3.24. If $f : X \to \text{top} P$ is nonzero in mod B, then $f \neq 0$.

Proposition 3.25. Let P be a projective indecomposable A-module. Then we have

$$\max \text{supp}(s'_P) \cong \text{top} P.$$

Thus $\nu'(P) = \max \text{supp}(s'_P)$.

Next we define a map sending a simple A-module to an element of the configurations.

Lemma 3.26. Let S be a simple A-module, and Q the injective hull of S in mod B. Then the left $(\text{mod} B)$-module $\tilde{\text{Hom}}_B(S,-)$ has a simple socle, and

$$\text{soc} \tilde{\text{Hom}}_B(S,-) \cong \tilde{\text{Hom}}_B(\text{rad} Q,-) / \tilde{\text{rad}}(\text{rad} Q,-).$$

It follows by the lemma above that the poset $\text{supp}(s_S)$ has the maximum element for each simple A-module S. We then set $\nu_B(S)$ to be the maximum element. The following is immediate.

Proposition 3.27. Let S be a simple A-module, and Q the injective hull of S in mod B. Then we have $\nu_B(S) \cong \text{rad} Q$.

We finally obtain the following by Propositions 3.25 and 3.27.

Theorem 3.28. Let \mathcal{P} be a complete set of representatives of isoclass of indecomposable projective A-modules. Then we have

$$\mathcal{C}_B = \nu_B(\nu'(\mathcal{P})).$$

Hence as is stated before, \mathcal{C}_A is obtained as follows.

Theorem 3.29.

$$\mathcal{C}_A = \mathcal{C}_A / \langle \phi \rangle = (\tau^{Zm} \sigma(C_B)) / \langle \phi \rangle = (\tau^{Zm} \sigma \nu_B(\nu'(\mathcal{P}))) / \langle \phi \rangle.$$

— 39 —
References

Department of Mathematics,
Graduate School of Science,
Shizuoka University, 836 Ohya, Suruga-ku,
Shizuoka, 422-8529, Japan
E-mail address: asashiba.hideto@shizuoka.ac.jp

Department of Mathematics,
Graduate School of Science and Technology,
Shizuoka University, 836 Ohya, Suruga-ku,
Shizuoka, 422-8529, Japan
E-mail address: gehotan@gmail.com