TILTED ALGEBRAS AND CONFIGURATIONS OF SELF-INJECTIVE ALGEBRAS OF DYNKIN TYPE

HIDETO ASASHIBA AND KEN NAKASHIMA

ABSTRACT. All algebras are assumed to be basic, connected finite-dimensional algebras over an algebraically closed field. We give an easier way to calculate a bijection from the set of isoclasses of tilted algebras of Dynkin type Δ to the set of configurations on the translation quiver $\mathbb{Z}\Delta$.

INTRODUCTION

This work is a generalization of Hironobu Suzuki's Master thesis [7] that dealt with representation-finite self-injective algebras of type A in a combinatorial way. Throughout this paper n is a positive integer and k is an algebraically closed field, and all algebras considered here are assumed to be basic, connected, finite-dimensional associative k-algebras.

Let Δ be a Dynkin graph of type A, D, E with the set $\Delta_0 := \{1, \ldots, n\}$ of vertices. We set \mathbf{C}_n to be the set of configurations on the translation quiver $\mathbb{Z}\Delta$ (see Definition 1.6), and \mathbf{T}_n to be the set of isoclasses of tilted algebras of type Δ . Then Bretscher, Läser and Riedtmann have given a bijection $c: \mathbf{T}_n \to \mathbf{C}_n$ in [1]. But the map c is not given in a direct way, it needs a long computation of a function on $\mathbb{Z}\Delta$. In this paper we will give an easier way to calculate the map c by giving a map sending each projective A-module over a tilted algebra A in \mathbf{T}_n to an element of the configuration c(A).

We fix an orientation of each Dynkin graph Δ to have a quiver $\overline{\Delta}$ as in the following table.

Δ	$A_n \ (n \ge 1)$	$D_n \ (n \ge 4)$	$E_n \ (n=6,7,8)$
		$\circ n$	o n ≜
Δ	$\begin{array}{c} 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \\ 1 2 \qquad n \end{array}$	$0 \cdots 0 0 0$	$0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow 0$ $1 \qquad n-3 n-2 n-1$
m_{Δ}	n	2n - 3	11, 17, 29, respectively

This orientation of Δ gives us a coordinate system on the set $(\mathbb{Z}\Delta)_0 := \mathbb{Z} \times \Delta_0$ of vertices of $\mathbb{Z}\Delta := \mathbb{Z}\vec{\Delta}$ as presented in [1, fig. 1] and in [3, Fig. 13], and by definition the full subquiver \mathcal{S} of $\mathbb{Z}\Delta$ consisting of $\{(0, i) \mid i \in \Delta_0\}$ is isomorphic to $\vec{\Delta}$.

Let A be a tilted algebra of type Δ . Then by identify A with the (0, 0)-entry of the repetitive category \hat{A} , the vertex set of AR-quiver Γ_A is embedded into the vertex set of the stable AR-quiver ${}_{s}\Gamma_{\hat{A}} \cong \mathbb{Z}\Delta$ of \hat{A} . Further the configuration $\mathcal{C} := c(A)$ of $\mathbb{Z}\Delta$ computed in [1] is given by the vertices of $\mathbb{Z}\Delta$ corresponding to radicals of projective

The detailed version of this paper will be submitted for publication elsewhere.

indecomposable \hat{A} -modules. Note that the configuration \mathcal{C} has a period m_{Δ} listed in the table, thus $\mathcal{C} = \tau^{m_{\Delta}\mathbb{Z}}\mathcal{F}$ for some subset \mathcal{F} of \mathcal{C} . By $\mathcal{P} = \{(p(i), i) \mid i \in \Delta_0\}$ we denote the set of images of the projective vertices of Γ_A in $\mathbb{Z}\Delta$ and set

$$\mathbb{N}\mathcal{P} := \{ (m, i) \in (\mathbb{Z}\Delta)_0 \mid p(i) \le m, i \in \Delta_0 \}.$$

Since the mesh category $\Bbbk(\mathbb{Z}\Delta)$ is a Frobenius category, it has the Nakayama permutation $\hat{\nu}$ on $(\mathbb{Z}\Delta)_0$ that is defined by the isomorphism

$$\Bbbk(\mathbb{Z}\Delta)(x,-) \cong \operatorname{Hom}_{\Bbbk}(\Bbbk(\mathbb{Z}\Delta)(-,\hat{\nu}x),\Bbbk)$$

for all $x \in (\mathbb{Z}\Delta)_0$. The explicit formula of $\hat{\nu}$ is given in [3, pp. 48–50]. (Note that it should be corrected as $\hat{\nu}(p,q) = (p+q+2, 6-q)$ if $q \leq 5$ when $\Delta = E_6$ as pointed out in [1, 1.1]). In this paper we will define a map $\nu' \colon \mathcal{P} \to \mathbb{N}\mathcal{P}$ using the supports of starting functions $\dim_{\mathbb{K}} \mathbb{K}(\mathbb{Z}\Delta)(x, -) \colon \mathbb{N}\mathcal{P} \to \mathbb{Z}$ for $x \in \mathbb{N}\mathcal{P}$ (cf. [3, Fig. 15]). Then ν' has the following property.

Lemma 0.1. Let $x \in \mathcal{P}$ and P be the projective indecomposable A-module corresponding to x. Then $\nu'x$ corresponds to the simple module top P.

In this paper, we make use of modules over the algebra

$$B := \begin{bmatrix} A & 0\\ DA & A \end{bmatrix}$$

to compute an \mathcal{F} above (the configuration (see Definition 3.9) of B gives \mathcal{F} .) We will define a map $\nu := \nu_B$ from the set of isoclasses of simple A-modules to \mathcal{C} , which coincides with the restriction of the Nakayama permutation $\hat{\nu}$ if A is hereditary.

Lemma 0.2. Assume that a vertex $x \in \mathbb{Z}\Delta$ corresponds to a simple A-module S and let Q be the injective hull of S over \hat{A} . Then $\nu(x)$ corresponds to rad Q, and hence $\nu(x) \in \mathcal{C}$.

Combining the lemmas above we obtain the following.

Proposition 0.3. If $x \in \mathcal{P}$, then $\nu(\nu'x) \in \mathcal{C}$.

This leads us to the following definition.

Definition 0.4. We define a map $c_A \colon \mathcal{P} \to \mathcal{C}$ by $c_A(x) := \nu(\nu'x)$ for all $x \in \mathcal{P}$.

The image of the map c_A gives us an \mathcal{F} above, namely we have the following.

Theorem 0.5. The map c_A is an injection, and we have $c(A) = \tau^{m_\Delta \mathbb{Z}} \operatorname{Im} c_A$.

Corollary 0.6. If A is hereditary, then $c_A = \hat{\nu}\nu'$ and we have $c(A) = \tau^{m_{\Delta}\mathbb{Z}} \operatorname{Im} \hat{\nu}\nu'$.

Section 1 is devoted to preparations. In Section 2 we will give the complete list of indecomposable projectives and indecomposable injectives over the triangular matrix algebra B. In Section 3 we state our main results.

1. Preliminaries

1.1. Algebras and categories. A category \mathcal{C} is called a \Bbbk -category if the morphism sets $\mathcal{C}(x, y)$ are \Bbbk -vector spaces, and the compositions $\mathcal{C}(y, z) \times \mathcal{C}(x, y) \to \mathcal{C}(x, z)$ are \Bbbk -bilinear for all $x, y, z \in \mathcal{C}_0$ (\mathcal{C}_0 is the class of objects of \mathcal{C} , we sometimes write $x \in \mathcal{C}$ for $x \in \mathcal{C}_0$). In the sequel all categories are assumed to be \Bbbk -categories unless otherwise stated.

To construct repetitive categories and to make use of a covering theory we need to extend the range of considerations from algebras to categories. First we regard an algebra as a special type of categories by constructing a category cat A from an algebra A as follows.

- (1) We fix a decomposition $1 = e_1 + \cdots + e_n$ of the identity element 1 of A as a sum of orthogonal primitive idempotents.
- (2) We set the object class of cat A to be the set $\{e_1, \ldots, e_n\}$.
- (3) For each pair (e_i, e_j) of objects, we set $(\operatorname{cat} A)(e_i, e_j) := e_j A e_i$.
- (4) We define the composition of $\operatorname{cat} A$ by the multiplication of A.

The obtained category cat A is uniquely determined up to isomorphisms not depending on the decomposition of 1. The category $C = \operatorname{cat} A$ is a small category having the following three properties.

- (1) Distinct objects are not isomorphic.
- (2) For each object x of C the algebra C(x, x) is local.
- (3) For each pair (x, y) of objects of C the morphism space C(x, y) is finite-dimensional.

A small category with these three properties is called a *spectroid*¹ and its objects are sometimes called *points*. A spectroid with only a finite number of points is called *finite*. The category cat A is a finite spectroid. Conversely we can construct a matrix algebra from a finite spectroid C as follows.

alg
$$C := \{ (m_{yx})_{x,y \in C} \mid m_{yx} \in C(x,y), \forall x, y \in C \}.$$

Here we have alg cat $A \cong A$, cat alg $C \cong C$. Therefore we can identify the class of algebras and the class of finite spectroids by using cat and alg.

A spectroid C is called *locally bounded* if for each point x the set $\{y \in C \mid C(x, y) \neq 0 \text{ or } C(y, x) \neq 0\}$ is a finite set. Of course algebras (= finite spectroids) are locally bounded. In the range of locally bounded spectroids we can freely construct repetitive categories or consider coverings.

Remark 1.1. We can construct the "path-category" $\Bbbk Q$ from a locally finite quiver Q by the same way as in the definition of the path-algebra. The only different part is in the following definition of compositions: For paths μ, ν with² $s(\mu) \neq t(\nu)$, it was defined as $\mu\nu = 0$ in the path-algebra, but in contrast the composition $\mu\nu$ is not defined in the path-category.

A locally bounded spectroid C is also presented as the form $\mathbb{k}Q/I$ for some locally finite quiver Q and for some ideal I of the path-category $\mathbb{k}Q$ such that I is included in the ideal

¹a terminology used in [4]

²Here $s(\mu)$ and $t(\nu)$ stand for the source of μ and the target of ν and compositions are written from the right to the left.

of kQ generated by the set of paths of length 2. Here the quiver Q is uniquely determined by C up to isomorphisms. This Q is called *the quiver* of C.

A (right) module over a spectroid C is a contravariant functor $C \to \text{Mod} \Bbbk$. From a usual (right) module over an algebra A we can construct a contravariant functor $\operatorname{cat} A \to \operatorname{Mod} \Bbbk$ by the correspondence $e_i \mapsto Me_i$ for each point e_i in $\operatorname{cat} A$, and $f \mapsto (\cdot f \colon Me_j \to Me_i)$ for each $f \in e_j Ae_i = (\operatorname{cat} A)(e_i, e_j)$. Conversely, from a contravariant functor $F \colon \operatorname{cat} A \to$ Mod \Bbbk we can construct an A-module $\bigoplus_{i=1}^n F(e_i)$; and these constructions are inverse to each other. In this way we can identify A-modules and modules over $\operatorname{cat} A$.

The set of projective indecomposable modules over a spectroid C is given by $\{C(-, x)\}_{x \in C}$ up to isomorphism, and finitely generated projective C-modules are nothing but finite direct sums of these. Using this we can define finitely generated modules or finitely presented modules over C by the same way as those over algebras.

The dimension of a C-module M is defined to be the dimension of $\bigoplus_{x \in C} M(x)$. When C is locally bounded, a C-module is finitely presented if and only if it is finitely generated if and only if it is finite-dimensional.

1.2. Repetitive category.

Definition 1.2. Let A be an algebra with a basic set of local idempotents $\{e_1, \ldots, e_n\}$.

(1) The repetitive category \hat{A} of A is a spectroid defined as follows. **Objects:** $\hat{A}_0 := \{x^{[i]} := (x, i) \mid x \in \{e_1, \dots, e_n\}, i \in \mathbb{Z}\}.$ **Morphisms:** Let $x^{[i]}, y^{[j]} \in \hat{A}_0$. Then we set

$$\hat{A}(x^{[i]}, y^{[j]}) := \begin{cases} \{f^{[i]} := (f, i) \mid f \in A(x, y)\} & (j = i) \\ \{\varphi^{[i]} := (\varphi, i) \mid \varphi \in DA(y, x)\} & (j = i + 1) \\ 0 & \text{otherwise.} \end{cases}$$

Compositions: The composition $\hat{A}(y^{[j]}, z^{[k]}) \times \hat{A}(x^{[i]}, y^{[j]}) \rightarrow \hat{A}(x^{[i]}, z^{[k]})$ is defined as follows.

(i) If j = i, k = j, then we use the composition of A:

 $A(y, z) \times A(x, y) \to A(x, z).$

(ii) If j = i, k = j + 1, then we use the right A-module structure of DA(-,?):

$$DA(z,y) \times A(x,y) \to DA(z,x).$$

(iii) If j = i + 1, k = j, then we use the left A-module structure of DA(-,?): $A(y,z) \times DA(y,x) \to DA(z,x).$

(iv) Otherwise the composition is zero.

- (2) For each $i \in \mathbb{Z}$, we denote by $A^{[i]}$ the full subcategory of \hat{A} whose object class is $\{x^{[i]} \mid x \in \{e_1, \ldots, e_n\}\}$.
- (3) We define the Nakayama automorphism ν_A of \hat{A} as follows: for each $i \in \mathbb{Z}, x, y \in A, f \in A(x, y)$ and $\phi \in DA(y, x)$,

$$\nu_A(x^{[i]}) := x^{[i+1]}, \nu_A(f^{[i]}) := f^{[i+1]}, \nu_A(\varphi^{[i]}) := \varphi^{[i+1]}.$$

Remark 1.3. (1) If a spectroid A is locally bounded, then so is \hat{A} .

(2) When A is an algebra, the set of all $\mathbb{Z} \times \mathbb{Z}$ -matrices with only a finite number of nonzero entries whose diagonal entries belong to A, (i + 1, i) entries belong to DA for all $i \in \mathbb{Z}$, and other entries are zero forms an infinite-dimensional algebra without identity element, which is called the *repetitive algebra* of A. The repetitive category \hat{A} is nothing but this repetitive algebra regarded as a spectroid in a similar way. This is not an algebra (= a finite spectroid) any more, but a locally bounded spectroid.

Definition 1.4 (Gabriel [2]). Let C be a locally bounded spectroid with a free³ action of a group G. Then we define the *orbit category* C/G of C by G as follows.

- (1) The objects of C/G are the G-orbits Gx of objects x of C.
- (2) For each pair Gx, Gy of objects of C/G we set

$$(C/G)(Gx,Gy) := \left\{ \left({}_{b}f_{a}\right)_{a,b} \in \prod_{(a,b)\in Gx\times Gy} C(a,b) \mid {}_{gb}f_{ga} = g({}_{b}f_{a}), \text{ for all } g \in G \right\}.$$

(3) The composition is defined by

$$({}_{d}h_{c})_{c,d} \cdot ({}_{b}f_{a})_{a,b} := \left(\sum_{b \in Gy} {}_{d}h_{b} \cdot {}_{b}f_{a}\right)_{a,d}$$

for all $({}_{b}f_{a})_{a,b} \in (C/G)(Gx, Gy), ({}_{d}h_{c})_{c,d} \in (C/G)(Gy, Gz)$. Note that each entry of the right hand side is a finite sum because C is locally bounded.

A functor $F: C \to C'$ is called a *Galois covering* with group G if it is isomorphic to the canonical functor $\pi: C \to C/G$, namely if there exists an isomorphism $H: C/G \to C'$ such that $F = H\pi$.

Remark 1.5. If A is an algebra and a group G acts freely on the category \hat{A} , then \hat{A}/G turns out to be a self-injective spectroid. In particular, when \hat{A}/G is a finite spectroid, it becomes a self-injective algebra. In this way we can construct a great number of self-injective algebras.

Definition 1.6. From a quiver Q we can construct a translation quiver $\mathbb{Z}Q$ as follows.

- $(\mathbb{Z}Q)_0 := \mathbb{Z} \times Q_0,$
- $(\mathbb{Z}Q)_1 := \mathbb{Z} \times Q_1 \cup \{(i, \alpha') \mid i \in \mathbb{Z}, \alpha \in Q_1\},\$
- We define the sources and the targets of arrows by

$$(i,\alpha)\colon (i,s(\alpha)) \to (i,t(\alpha)), \ (i,\alpha')\colon (i,t(\alpha)) \to (i+1,s(\alpha))$$

for all $(i, \alpha) \in \mathbb{Z} \times Q_1$.

• We take the bijection $\tau : (\mathbb{Z}Q)_0 \to (\mathbb{Z}Q)_0, (i, x) \mapsto (i - 1, x)$ as the translation.

In addition, we can define a polarization by $(i + 1, \alpha) \mapsto (i, \alpha')$, $(i, \alpha') \mapsto (i, \alpha)$. Note that by construction the translation quiver $\mathbb{Z}Q$ does not have any projective or injective vertices.

 ${}^{3}1 \neq g \in G, x \in C_0$ implies $gx \neq x$

For example,

Remark 1.7. When Q is a Dynkin quiver with the underlying graph Δ , the isoclass of $\mathbb{Z}Q$ does not depend on orientations of Δ , therefore we set $\mathbb{Z}\Delta := \mathbb{Z}Q$.

2. TRIANGULAR MATRIX ALGEBRAS

Definition 2.1. Let *R* and *S* be algebras, *M* be an *S*-*R*-bimodule. We define a category C = C(R, S, M) as follows.

Objects: $C_0 := \{(X, Y, f) \mid X_R \in \text{mod } R, Y_S \in \text{mod } S, f \in \text{Hom}_A(Y \otimes_S M, X)\}.$ **Morphisms:** Let $(X, Y, f), (X', Y', f') \in C_0$. Then we set

$$\mathcal{C}((X,Y,f),(X',Y',f')) := \left\{ (\phi_0,\phi_1) \in \operatorname{Hom}_R(X,X') \times \operatorname{Hom}_S(Y,Y') \middle| \begin{array}{c} Y \otimes_S M \xrightarrow{f} X \\ \phi_1 \otimes 1_M \\ \phi_1 \otimes 1_M \\ Y' \otimes_S M \xrightarrow{f'} X' \end{array} \right\}.$$

Compositions: Let $(X, Y, f), (X', Y', f'), (X'', Y'', f'') \in \mathcal{C}_0$ and let

 $(\phi_0,\phi_1) \in \mathcal{C}((X,Y,f), (X',Y',f')), (\phi'_0,\phi'_1) \in \mathcal{C}((X',Y',f'), (X'',Y'',f'')).$ Then we set

$$(\phi_0',\phi_1')(\phi_0,\phi_1) := (\phi_0'\phi_0,\phi_1'\phi_1) \in \mathcal{C}((X,Y,f),(X'',Y'',f'')).$$

Then the following is well known.

Proposition 2.2. Let R and S be algebras, M be an S-R-bimodule. Then

$$\operatorname{mod} \begin{bmatrix} R & 0 \\ M & S \end{bmatrix} \simeq \mathcal{C}(R, S, M).$$

Recall that an equivalence $F : \mod \begin{bmatrix} R & 0 \\ M & S \end{bmatrix} \to \mathcal{C}(R, S, M)$ is given as follows. **Objects:** For each $L \in (\mod T)_0$,

$$F(L) := (L\varepsilon_1, L\varepsilon_2, f_L),$$

where $\varepsilon_1 := \begin{bmatrix} 1_R & 0 \\ 0 & 0 \end{bmatrix}, \varepsilon_2 := \begin{bmatrix} 0 & 0 \\ 0 & 1_S \end{bmatrix}$ and $f_L : L\varepsilon_2 \otimes_S M \to L\varepsilon_1$ is defined by
 $f_L(l\varepsilon_2 \otimes m) := l \begin{bmatrix} 0 & 0 \\ m & 0 \end{bmatrix}$ for all $l \in L$ and $m \in M$.
Morphisms: For each $\alpha \in \operatorname{Hom}_T(L, L'),$
 $F(\alpha) := (\alpha \mid_{L\varepsilon_1}, \alpha \mid_{L\varepsilon_2}).$

Let A be a tilted algebra of type Δ , and set $B := \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix}$, $\mathcal{C} := \mathcal{C}(A, A, DA)$.

Then we have mod $B \simeq \mathcal{C}$ by Proposition 2.2. By this equivalence, we identify mod B with \mathcal{C} .

Let $\{e_1, \ldots, e_n\}$ be a complete set of orthogonal local idempotents of A. Then as is easily seen

 $\{e_1^{[0]}, \ldots, e_n^{[0]}, e_1^{[1]}, \ldots, e_n^{[1]}\}$ is a complete set of orthogonal local idempotents of B, and $\{e_1^{[0]}B, \ldots, e_n^{[0]}B, e_1^{[1]}B, \ldots, e_n^{[1]}B\}$ is a complete set of isoclasses of projective indecomposable B-modules. The following is immediate.

Proposition 2.3. For each i = 1, ..., n, we have

$$F(e_i^{[0]}B) \cong (e_iA, 0, 0),$$

$$F(e_i^{[1]}B) \cong (e_i(DA), e_iA, \operatorname{can}).$$

In addition $\{D(Be_1^{[0]}), \ldots, D(Be_n^{[0]}), D(Be_1^{[1]}), \ldots, D(Be_n^{[1]})\}$ is a complete set of isoclasses of injective indecomposable *B*-modules. The following two statements are obvious.

Lemma 2.4. For each i = 1, ..., n, we have

(1)
$$D\begin{bmatrix} Ae_i & 0\\ (DA)e_i & 0 \end{bmatrix} \cong \begin{bmatrix} 0 & 0\\ D(Ae_i) & e_iA \end{bmatrix}$$
, and
(2) $D\begin{bmatrix} 0 & 0\\ 0 & Ae_i \end{bmatrix} \cong \begin{bmatrix} 0 & 0\\ 0 & D(Ae_i) \end{bmatrix}$.

Proposition 2.5. For each i = 1, ..., n, we have

$$F(D(Be_i^{[0]})) \cong (e_i(DA), e_iA, \operatorname{can}) \cong e_i^{[1]}B,$$

$$F(D(Be_i^{[1]})) \cong (0, e_i(DA), 0).$$

3. Configurations

Definition 3.1. Let Λ be a standard representation-finite self-injective algebra. Then we set

 $\mathcal{C}_{\Lambda} := \{ [rad P] \in \Gamma_{\Lambda} \mid P : projective(-injective) \Lambda - module \},\$

which is called a *configuration* of Λ .

Definition 3.2. Let Γ be a stable translation quiver, and C be a subset of Γ_0 . Then we define a translation quiver Γ_C by

$$(\Gamma_{\mathcal{C}})_0 := \Gamma_0 \sqcup \{ p_x \mid x \in \mathcal{C} \}, (\Gamma_{\mathcal{C}})_1 := \Gamma_1 \sqcup \{ x \to p_x, \ p_x \to \tau^{-1} x \},$$

where the translation of $\Gamma_{\mathcal{C}}$ is the same as that of Γ . In particular, p_x are projectiveinjective⁴ vertices for all $x \in \mathcal{C}$.

⁴The word "projective-injective" stands for projective and injective.

Remark 3.3. The quiver of $\underline{\mathrm{mod}} \Lambda$ is the full subquiver ${}_{s}\Gamma_{\Lambda}$ of Γ_{Λ} with

 $({}_{s}\Gamma_{\Lambda})_{0} := \{x \mid x \text{ is a stable vertex of } \Gamma_{\Lambda}\}$

(namely ${}_{s}\Gamma_{\Lambda}$ is obtained from Γ_{Λ} by removing all projective vertices), which is a stable translation quiver. Then it holds that $\mathcal{C}_{\Lambda} \subseteq ({}_{s}\Gamma_{\Lambda})_{0}$, and we have

$$({}_{s}\Gamma_{\Lambda})_{\mathcal{C}_{\Lambda}} \cong \Gamma_{\Lambda}.$$
 (3.1)

Theorem 3.4. Let Λ be a standard representation-finite self-injective algebra and Δ the Dynkin type of Λ . Then the following hold.

- (1) (Waschbüsch [5, 8]) There exist a tilted algebra A of type Δ and an automorphism ϕ of \hat{A} without fixed vertices such that $\Lambda \cong \hat{A}/\langle \phi \rangle$.
- (2) (Riedtmann [6]) There is an isomorphism $f : {}_{s}\Gamma_{\hat{A}} \to \mathbb{Z}\Delta$. Denote also by ϕ the automorphism of ${}_{s}\Gamma_{\hat{A}}$ induced from ϕ canonically, and define an automorphism ϕ' of $\mathbb{Z}\Delta$ by the following commutative diagram:

$$s\Gamma_{\hat{A}} \xrightarrow{f} \mathbb{Z}\Delta$$

$$\phi \bigg| \qquad \circlearrowright \qquad \psi \bigg| \qquad \phi'$$

$$s\Gamma_{\hat{A}} \xrightarrow{f} \mathbb{Z}\Delta.$$

Then we have ${}_{s}\Gamma_{\Lambda} \cong {}_{s}\Gamma_{\hat{A}}/\langle \phi \rangle \cong \mathbb{Z}\Delta/\langle \phi' \rangle.$

By the formula (3.1) to compute Γ_{Λ} , it is enough to solve the following problem.

Problem 1. Let Λ be a standard representation-finite self-injective algebra, which has the form $\hat{A}/\langle \phi \rangle$ for some tilted algebra A of Dynkin type and an automorphism ϕ of \hat{A} by Theorem 3.4. Then compute C_{Λ} from A.

Remark 3.5. Let $f': {}_{s}\Gamma_{\Lambda} \to \mathbb{Z}\Delta/\langle \phi' \rangle$ be an isomorphism, and set $\mathcal{C} := f'(\mathcal{C}_{\Lambda})$. Then we have

$$\Gamma_{\Lambda} \cong ({}_{s}\Gamma_{\Lambda})_{\mathcal{C}_{\Lambda}} \cong (\mathbb{Z}\Delta/\langle \phi' \rangle)_{\mathcal{C}}.$$

Thus we can compute Γ_{Λ} by Theorem 3.4(2) if we can obtain the set C.

On the other hand, the following holds by [2, Theorem 3.6].

Theorem 3.6 (Gabriel). Let R be a locally representation-finite and locally bounded \Bbbk category, and G be a group consisting of automorphisms of R that acts freely on R. Then the AR-quiver Γ_R of R has an induced G-action, and we have $\Gamma_R/G \cong \Gamma_{R/G}$.

Definition 3.7. Let A be a tilted algebra of Dynkin type. Then we set

$$\mathcal{C}_{\hat{A}} := \{ [\operatorname{rad} P] \in \Gamma_{\hat{A}} \mid P : \operatorname{projective}(-\operatorname{injective}) \ \hat{A} - \operatorname{module} \} \}$$

which is called the *configuration* of \hat{A} .

Corollary 3.8. Let A be a tilted algebra of Dynkin type, and ϕ be an automorphism of A without fixed vertices. Then we have

$$\mathcal{C}_{\hat{A}}/\langle \phi \rangle \cong \mathcal{C}_{\Lambda}.$$

Therefore to solve Problem 1, it is enough to consider the following.

Problem 2. In the same setting as in Problem 1, compute $C_{\hat{A}}$ from A.

Throughout the rest of their section

(1) let A be a tilted algebra of Dynkin type Δ , and set

$$(2) \ B := \begin{bmatrix} A & 0\\ DA & A \end{bmatrix}$$

By (1), Γ_A has a section \mathcal{S} whose underlying graph is isomorphic to Δ .

Definition 3.9. We call the following set the *configuration* of *B*:

 $\mathcal{C}_B := \{ [rad P] \in \Gamma_B \mid P : projective-injective B-module \}.$

3.1. Relationship among \hat{A} , B and A. We set as follows:

$$I_{0,1} = \langle e_j^{[i]} \mid i \in \mathbb{Z} \setminus \{0,1\}, j \in \{1,\dots,n\}\rangle,$$

$$I_0 = \langle e_j^{[i]} \mid i \in \mathbb{Z} \setminus \{0\}, j \in \{1,\dots,n\}\rangle,$$

$$I_1 = \langle e_j^{[i]} \mid i \in \mathbb{Z} \setminus \{1\}, j \in \{1,\dots,n\}\rangle.$$

Then $\hat{A}/I_{0,1} \cong B$, $\hat{A}/I_0 \cong A^{[0]} (\cong A)$ and $\hat{A}/I_1 \cong A^{[1]} (\cong A)$. We also have

$$B \Big/ \begin{bmatrix} 0 & 0 \\ DA & 0 \end{bmatrix} \cong A^{[0]} \times A^{[1]}.$$

We have the following surjective algebra homomorphisms

which induce the following embeddings of categories

We regard mod $A \subseteq \mod B$ by the embedding $\mod A = \mod A^{[0]} \longrightarrow \mod B$. The embeddings above give us the following embeddings of vertex sets of AR-quivers:

We define an ideal $\Bbbk(\mathbb{Z}\Delta)^+$ of the mesh category $\Bbbk(\mathbb{Z}\Delta)$ as follows:

$$\Bbbk(\mathbb{Z}\Delta)^+ := \langle (\mathbb{Z}\Delta)_1 + I_{\mathbb{Z}\Delta} \rangle.$$

Then the values of $m_{\Delta} := \min\{m \in \mathbb{N} \mid (\mathbb{K}(\mathbb{Z}\Delta)^+)^i = 0, \forall i \geq m\}$ are known as follows:

$$m_{\Delta} = \begin{cases} n & (\Delta = A_n) \\ 2n - 3 & (\Delta = D_n) \\ 11 & (\Delta = E_6) \\ 17 & (\Delta = E_7) \\ 29 & (\Delta = E_8) \end{cases}$$

We see the following by [1].

Proposition 3.10. *Let* i = 0, 1*.*

- (1) The full subquiver $\mathcal{S}_{B}^{[i]}$ of Γ_{B} with the vertex set $\sigma_{i}(\mathcal{S}_{0})$ forms a section of ${}_{s}\Gamma_{B}$. (2) The full subquiver $\mathcal{S}_{\hat{A}}^{[i]}$ of $\Gamma_{\hat{A}}$ with the vertex set $\sigma\sigma_{i}(\mathcal{S}_{0})$ forms a section of ${}_{s}\Gamma_{\hat{A}}$.

Remark 3.11. A quiver Q without oriented cycles will be regarded as a poset by the order defined as follows:

For each $x, y \in Q_0, x \leq y$: \Leftrightarrow there is a path in Q from x to y.

Definition 3.12. (1) We set \mathcal{H}_B to be the full subquiver of Γ_B defined by the set

$$(\mathcal{H}_B)_0 := \{ x \in (\Gamma_B)_0 \mid a \preceq x \preceq b \text{ for some } a \in (\mathcal{S}_B^{[0]})_0, b \in (\mathcal{S}_B^{[1]})_0 \}$$

of vertices. (2) We set $\mathcal{H}_{\hat{A}}^{[0,1]}$ to be the full subquiver of $\Gamma_{\hat{A}}$ defined by the set

$$(\mathcal{H}_{\hat{A}}^{[0,1]})_0 := \{ x \in (\Gamma_{\hat{A}})_0 \mid a \leq x \leq b \text{ for some } a \in (\mathcal{S}_{\hat{A}}^{[0]})_0, b \in (\mathcal{S}_{\hat{A}}^{[1]})_0 \}$$

of vertices.

Proposition 3.13. (1) The map $\sigma : (\Gamma_B)_0 \to (\Gamma_{\hat{A}})_0$ is uniquely extended to a quiver isomorphism $\mathcal{H}_B \to \mathcal{H}_{\hat{A}}^{[0,1]}$.

(2) We have
$$\mathcal{S}_{\hat{A}}^{[1]} = \tau^{-m_{\Delta}} \mathcal{S}_{\hat{A}}^{[0]}$$
. We set $\mathcal{S}_{\hat{A}}^{[n]} := \tau^{-nm_{\Delta}} \mathcal{S}_{\hat{A}}^{[0]}$ for all $n \in \mathbb{Z}$.

(3) Set
$$\mathcal{H}_{\hat{A}}^{[n,n+1]} := \tau^{-nm_{\Delta}}(\mathcal{H}_{\hat{A}}^{[0,1]})$$
 for all $n \in \mathbb{Z}$. Then for each $i = 0, 1$

$$(\Gamma_{\hat{A}})_i = \bigcup_{n \in \mathbb{Z}} (\mathcal{H}_{\hat{A}}^{[n,n+1]})_i$$
$$(\mathcal{S}_{\hat{A}}^{[n+1]})_i = (\mathcal{H}_{\hat{A}}^{[n,n+1]})_i \cap (\mathcal{H}_{\hat{A}}^{[n+1,n+2]})_i$$

Roughly speaking, $\Gamma_{\hat{A}}$ is obtained by connecting infinite copies of \mathcal{H}_B on both sides.

Example 3.14. Let A be the path algebra of the following quiver.

$$1^{[0]} \longrightarrow 2^{[0]} \longrightarrow 3^{[0]}$$

Therefore A is a tilted algebra of type A₃. Moreover $B = \begin{bmatrix} A & 0 \\ DA & A \end{bmatrix} = \begin{bmatrix} A^{[0]} & 0 \\ (DA)^{[0]} & A^{[1]} \end{bmatrix}$ is an algebra given by following quiver with relations.

Then Γ_B is given as follows (elements of \mathcal{C}_B are encircled).

In the above, \mathcal{H}_B is given by the full subquiver consisting of vertices between the left section and the right section. \hat{A} is given by the following quiver with relations.

Then $\Gamma_{\hat{A}}$ is follows (each element of $\mathcal{C}_{\hat{A}}$ is encircled by a broken or solid line, in particular solid circles present elements of \mathcal{C}_B). In this case we have $m_{\Delta} = 3$.

The following is immediate from Proposition 3.13.

Corollary 3.15. We have $C_{\hat{A}} = \tau^{\mathbb{Z}m_{\Delta}}\sigma(C_B)$.

By this corollary, Problem 2 is reduced to the following.

Problem 3. Let A be a tilted algebra of Dynkin type Δ , and B as above. Then give the configuration C_B from A.

The purpose of this section is to solve Problem 3.

Definition 3.16. (1) We define an ideal \mathcal{PI} of mod B as follows and set mod $B := (\text{mod } B)/\mathcal{PI}$. For each $X, Y \in (\text{mod } B)_0$

 $\mathcal{PI}(X,Y) := \{ f \in \operatorname{Hom}_B(X,Y) | f \text{ factors through a projective-injective } B \text{-module} \}$

Let $(\tilde{?})$: mod $B \to \widetilde{\text{mod}} B$ be the canonical functor and set

$$\widetilde{\operatorname{Hom}}_B(\tilde{X}, \tilde{Y}) := (\widetilde{\operatorname{mod}} B)(\tilde{X}, \tilde{Y})$$

for all $X, Y \in \text{mod } B$. Thus $\tilde{X} = X$ for all $X \in (\text{mod } B)_0$ and $\tilde{f} = f + \mathcal{PI}(X, Y)$ for all $f \in \text{Hom}_B(X, Y)$.

(2) We denote by $\operatorname{mod}_{\mathcal{PI}} B$ the full subcategory of $\operatorname{mod} B$ consisting of *B*-modules without projective-injective direct summands.

(3) Let X and $Y \in \operatorname{mod}_{\mathcal{PI}} B$. Then it is well known that $\mathcal{PI}(X,Y) \subseteq \operatorname{rad}_B(X,Y)$. We set $\operatorname{rad}_B(X,Y) := \operatorname{rad}_B(X,Y)/\mathcal{PI}(X,Y)$.

Definition 3.17. For AR-quiver Γ_B of B, we define the full translation subquiver Γ_B as follows.

 $(\tilde{\Gamma}_B)_0 := \{ X \in (\Gamma_B)_0 \mid X \text{ is } not \text{ projective-injective.} \}$

Moreover we set

$$\operatorname{supp}(s_X) := \{ Y \in (\Gamma_B)_0 \mid s_X(Y) \neq 0 \},\$$

where the map $s_X : (\tilde{\Gamma}_B)_0 \to \mathbb{Z}_{\geq 0}$ is defined by $s_X(Y) := \dim \widetilde{\operatorname{Hom}}_B(\tilde{X}, \tilde{Y}) \ (Y \in (\tilde{\Gamma}_B)_0)$ for all $X \in (\tilde{\Gamma}_B)_0$.

Definition 3.18. Let P be a projective indecomposable A-module, and rad $P = \bigoplus_{i=1}^{r} R_i$ with R_i indecomposable for all i. Then we define a full subquiver \mathcal{R}_P of $\tilde{\Gamma}_B$ by

$$(\mathcal{R}_P)_0 := \operatorname{supp}(s_P) \setminus \left(\bigcup_{i=1}^r \operatorname{supp}(s_{R_i})\right).$$

Definition 3.19. We regard the subquiver \mathcal{R}_P as a poset by Remark 3.11. For a projective indecomposable A-module P, we set

$$\nu'(P) := \min \mathcal{R}_P.$$

Example 3.20. In the following figure, the vertices inside broken lines form $\operatorname{supp}(s_P)$ and those inside doted lines form $(\bigcup_{i=1}^r \operatorname{supp}(s_{R_i}))$. Therefore the subquiver \mathcal{R}_P consists of the vertices inside solid lines, and $\nu'(P)$ is the minimum element of \mathcal{R}_P . Projective vertices are presented by white circles \circ .

We have the following the proof of which is omitted.

Proposition 3.21. Let P be a projective indecomposable A-module. then $\nu'(P) \cong \operatorname{top} P$.

We will give an alternative definition of the map ν' below, which is easier to compute than the first one.

Definition 3.22. Let $P \in \text{mod } B$ be projective.

(1) Let \mathcal{P}_P be the full subcategory of mod *B* consisting of projective modules *Q* such that *P* is not a direct summand of *Q*.

(2) We define an ideal \mathcal{I}_P of mod B and the factor category $\underline{\mathrm{mod}}^P B := \mathrm{mod} B/\mathcal{I}_P$ of mod B by setting

 $\mathcal{I}_P(X,Y) := \{ f \in \operatorname{Hom}_B(X,Y) \mid f \text{ factors through an object in } \mathcal{P}_P \},\$

and set

$$\underline{\operatorname{Hom}}_{B}^{P}(X,Y) := \operatorname{Hom}_{B}(X,Y)/\mathcal{I}_{P}(X,Y)$$

for all $X, Y \in \text{mod } B$. Let $(?): \text{mod } B \to \underline{\text{mod}}^P B$ be the canonical functor. Thus $\underline{X} = X$ for all $X \in (\text{mod } B)_0$ and $\overline{f} = f + \mathcal{I}_P(X, Y)$ for all $f \in \text{Hom}_B(X, Y)$.

$$\operatorname{supp}(s'_P) := \{ X \in (\mathring{\Gamma}_B)_0 \mid s'_P(X) \neq 0 \} \subseteq (\mathring{\Gamma}_B)_0$$

where the map $s'_P : (\tilde{\Gamma}_B)_0 \to \mathbb{Z}_{\geq 0}$ is defined by $s_P(X) := \dim \operatorname{\underline{Hom}}_B^P(P, X)$ $(X \in (\tilde{\Gamma}_B)_0)$ for all $P \in (\tilde{\Gamma}_B)_0$.

The easier way to compute ν' is given by the following three statements, which we state without proofs.

Lemma 3.23. Let Q and X be in mod B. If Q is projective and there is an epimorphism $Q \to X$, then the projective cover of X is a direct summand of Q.

Lemma 3.24. If $f: X \to \text{top } P$ is nonzero in mod B, then $f \neq 0$.

Proposition 3.25. Let P be a projective indecomposable A-module. Then we have

$$\max \operatorname{supp}(s'_P) \cong \operatorname{top} P.$$

Thus $\nu'(P) = \max \operatorname{supp}(s'_P)$.

Next we define a map sending a simple A-module to an element of the configurations.

Lemma 3.26. Let S be a simple A-module, and Q the injective hull of S in mod B. Then the left $(\operatorname{mod} B)$ -module $\operatorname{Hom}_B(S, -)$ has a simple socle, and

$$\operatorname{soc} \widetilde{\operatorname{Hom}}_B(S, -) \cong \widetilde{\operatorname{Hom}}_B(\operatorname{rad} Q, -)/\operatorname{rad}(\operatorname{rad} Q, -).$$

It follows by the lemma above that the poset $\operatorname{supp}(s_S)$ has the maximum element for each simple A-module S. We then set $\nu_B(S)$ to be the maximum element. The following is immediate.

Proposition 3.27. Let S be a simple A-module, and Q the injective hull of S in mod B. Then we have $\nu_B(S) \cong \operatorname{rad} Q$.

We finally obtain the following by Propositions 3.25 and 3.27.

Theorem 3.28. Let \mathcal{P} be a complete set of representatives of isoclass of indecomposable projective A-modules. Then we have

$$\mathcal{C}_B = \nu_B(\nu'(\mathcal{P})).$$

Hence as is stated before, C_{Λ} is obtained as follows.

Theorem 3.29.

$$\mathcal{C}_{\Lambda} = \mathcal{C}_{\hat{A}} / \langle \phi \rangle = (\tau^{\mathbb{Z}m_{\Delta}} \sigma(\mathcal{C}_B)) / \langle \phi \rangle = (\tau^{\mathbb{Z}m_{\Delta}} \sigma \nu_B \nu'(\mathcal{P})) / \langle \phi \rangle$$

References

- Brescher, O. Läser, C. Riedtmann, C.: Selfinjective and Simply Connected Algebras, manuscripta mathematica, 36 (1981), 253–307.
- Gabriel, P.: The universal cover of a representation-finite algebra, in Lecture Notes in Mathematics, Vol. 903, Springer-Verlag, Berlin/New York (1981), 68–105.
- [3] Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), pp. 1–71, Lecture Notes in Math.,831, Springer, Berlin, 1980.
- [4] Gabriel, P.; and Roiter, A. V.: Representations of finite-dimensional algebras, Encyclopaedia of Mathematical sciences Vol. 73, Springer-Verlag, Berlin/New York, 1992.
- Hughes, D. and Waschbüsch, J.: Trivial extensions of tilted algebras, Proc. London Mathematical Society (3)46 (1983), 347–364.
- [6] Riedtmann, C.: Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), no. 2, 199–224.
- [7] Suzuki, H.: On configurations of self-injective algebras, Master Thesis at Graduate School of Science, Shizuoka University, 2013.
- [8] Waschbüsch, J.: Universal coverings of self-injective algebras, Representations of algebras (Puebla, 1980), 331–349, Lecture Notes in Math., 903, Springer, Berlin-New York, 1981.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, SHIZUOKA UNIVERSITY, 836 OHYA, SURUGA-KU, SHIZUOKA, 422-8529, JAPAN *E-mail address*: asashiba.hideto@shizuoka.ac.jp

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, SHIZUOKA UNIVERSITY, 836 OHYA, SURUGA-KU, SHIZUOKA, 422-8529, JAPAN

E-mail address: gehotan@gmail.com