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NOTES ON THE HOCHSCHILD HOMOLOGY DIMENSION AND
TRUNCATED CYCLES

TOMOHIRO ITAGAKI AND KATSUNORI SANADA

Abstract. In this paper, we show that if an algebra KQ/I with an ideal I of KQ
contained in Rm

Q for an integer m ≥ 2 has an m-truncated cycle, then this algebra has
infinitely many nonzero Hochschild homology groups, where RQ denotes the arrow ideal.
Consequently, such an algebra of finite global dimension has no m-truncated cycles and
satisfies an m-truncated cycles version of the no loops conjecture.

1. Introduction

In [8], Happel remarks that if all the higher Hochschild cohomology groups vanish for
a finite dimensional algebra, then does the algebra have finite global dimension? This is
called “Happel’s question”. It is shown in [3] that this does not hold in general.

On the other hand, in [7], Han conjectures the homology version of Happel’s question,
that is, if all the higher Hochschild homology groups of a finite dimensional algebra vanish,
then is the algebra of finite global dimension? Moreover, he shows that the counter
example of Happel’s question in [3] satisfies Han’s conjecture in [7].

In [4], Han’s conjecture is approached with focusing on the combinatorics of quiv-
ers of algebras. Specifically, it is shown that all algebras having a 2-truncated cycle in
which the product of two consecutive arrows is always zero, have infinitely many nonzero
Hochschild homology groups. Consequently, 2-truncated cycles version of the well-known
“no loops conjecture”holds: algebras of finite global dimension have no 2-truncated cy-
cles. In addition, for arbitrary integer m ≥ 2, an m-truncated cycles version of the “no
loops conjecture”is conjectured. In particular, it is shown that monomial algebras satisfy
an m-truncated cycles version of the “no loops conjecture”. For finite dimensional ele-
mentary algebras, in [9], it is shown that the no loops conjecture can be derived from an
earlier result of Lenzing in [12] (cf. [10]).

In this paper, we show the following assertion: Let K be a field, Q a finite quiver,
RQ the arrow ideal of KQ and m ≥ 2 a positive integer. If an algebra KQ/I with an
ideal I ⊂ KQ contained in Rm

Q has an m-truncated cycle, then KQ/I has infinitely many
nonzero Hochschild homology groups (Theorem 6). Consequently, in the case I is an
admissible ideal of KQ which is contained in Rm

Q , then KQ/I satisfies an m-truncated
cycles version of the “no loops conjecture”. That is, if KQ/I has finite global dimension,
then it contains no m-truncated cycles (Corollary 7). This result generalizes the result
[4, Corollary 3.3].

The detailed version of this paper has been published in Archiv der Mathematik.
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2. Preliminaries

Let K be a commutative ring and A a unital K-algebra. Thus, there exists a nonzero
ring homomorphism K → A, whose image is contained in the center of A. We assume
that A is finitely generated as a K-module. Throughout the paper, ⊗ denotes ⊗K for the
sake of simplicity.

For each n ≥ 1, we denote the n-fold tensor product A⊗ · · · ⊗ A of A over K by A⊗n

and the enveloping algebra of A by Ae.

Definition 1 ([13]). The Hochschild complex is the following complex:

· · · → M ⊗ A⊗n b→ M ⊗ A⊗n−1 b→ · · · b→ M ⊗ A⊗2 b→ M ⊗ A
b→ M,

where M is a left Ae-module, the module M ⊗ A⊗n is in degree n, and the map b :
M ⊗ A⊗n → M ⊗ A⊗n−1 is given by the formula

b(x⊗ a1 ⊗ · · · ⊗ an) := xa1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑
i=1

(−1)i(x⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an) + (−1)nanx⊗ a1 ⊗ · · · ⊗ an−1.

The n-th Hochschild homology group HHn(A,M) of A with coefficients in the left Ae-
module M is defined by the n-th homology group of the Hochschild complex above. In
particular, HHn(A,A) is simply called the n-th Hochschild homology group of A, which
is denoted by HHn(A).

It is well known that if the unital K-algebra A is a projective K-module, then the
n-th Hochschild homology group HHn(A) is given by TorA

e

n (A,A). Now we recall the
definition of the bar resolution of A.

Definition 2 ([13]). Let A be a unital K-algebra. The following resolution of the left
Ae-module A denoted by Cbar is called the bar resolution:

Cbar :−→ A⊗n+1 b′−→ A⊗n −→ · · · −→ A⊗3 b′−→ A⊗2 µ−→ A −→ 0,

where µ is multiplication and b′ is defined by b′(a0 ⊗ · · · ⊗ an) =
∑n−1

i=0 (−1)i(a0 ⊗ · · · ⊗
aiai+1 ⊗ · · · ⊗ an).

Let A and B be two K-algebras and suppose that f : A → B is a K-algebra homo-
morphism. Then f is a homomorphism of rings, the composition map of f and the map
K → A giving the K-algebra structure of A is equal to the map K → B giving the
K-algebra structure of B. This implies that bf⊗(n+1) = f⊗nb, therefore {f⊗n}n∈N is a
chain map between the Hochschild complex of A and the one of B. For each n ≥ 0, this
map of Hochschild complexes induces a map f⊗(n+1) : HHn(A) → HHn(B) of Hochschild
homology groups. The following fact is the key of the main theorem in [4]: if we can
show that the image of HHn(A) → HHn(B) is nonzero, then this forces HHn(A) to be
nonzero. This fact is also important for our main theorem.

Finally, in [4], the Hochschild homology dimension of the algebra A is defined by

HHdimA = sup{n ∈ Z |HHn(A) ̸= 0},
which is treated in the main theorem.
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3. The Hochschild homology of truncated quiver algebras

In this section, for a truncated quiver algebra we give elements in the complex, induced
by Sköldberg’s projective resolution P , which correspond to nonzero homology classes.

Let Q = (Q0, Q1, s, t) be a finite quiver. For an arrow α ∈ Q1, its source and target are
denoted by s(α) and t(α), respectively. A path in Q is a sequence of arrows α1α2 · · ·αn

such that t(αi) = s(αi+1) for i = 1, . . . , n− 1. The set of all paths of length n is denoted
by Qn.

For a path γ of Q, |γ| denotes the length of γ. A path γ is said to be a cycle if |γ| ≥ 1
and its source and target coincide. The period of a cycle γ is defined by the smallest
integer i such that γ = δj (j ≥ 1) for a cycle δ of length i, which is denoted by per γ. A
cycle is said to be a basic cycle if the length of the cycle coincides with its period. It is also
called a proper cycle [7]. Denote by Qc

n (respectively Qb
n) the set of cycles (respectively

basic cycles) of length n. Let Gn = ⟨g⟩ be the cyclic group of order n and the path
α1 · · ·αn−1αn a cycle where αi is an arrow in Q. Then we define the action of Gn on Qc

n

by g · (α1 · · ·αn−1αn) := αnα1 · · ·αn−1, and Qc
n/Gn denotes the set of all Gn-orbits on

Qc
n. Similarly, Gn acts on Qb

n, and Qb
n/Gn denotes the set of all Gn-orbits on Qb

n. For
γ̄ ∈ Qc

n/Gn, we denote by per γ̄ the period of γ, that is per γ̄ := per γ. For convenience
we use the notation Qc

0/G0 for the set of vertices Q0.
Sköldberg gives an projective resolution P of a truncated quiver algebra A. Moreover,

by means of the complex
⊕

i

⊕
γ̄∈Qc

i/Gi
Kγ̄,n given by the following isomorphism:

A⊗Ae Pn
φ−→ A⊗KQe

0
KΓ(n) ∼−→

⊕
i

⊕
γ̄∈Qc

i/Gi

Kγ̄,n,

he gives the module structure of HHn(A), where the set Γ(∗) is given by

Γ(i) =

{
Qcm if i = 2c (c ≥ 0),
Qcm+1 if i = 2c+ 1 (c ≥ 0).

In order to prove our main theorem, we investigate elements in A⊗KQe
0
Γ(∗) which corre-

spond to nonzero homology classes.

Lemma 3. Let K be a field and A = KQ/Rm
Q a truncated quiver algebra. For an element

γ̄ ∈ Qc
cm/Gcm with γ = α1 · · ·αcm(α1, . . . , αcm ∈ Q1), the following elements correspond

to non-zero homology classes:

α(c−1)m+i+1 · · ·αcmα1 · · ·αi−1 ⊗ αi · · ·α(c−1)m+i ∈ A⊗KQe
0
Γ((c−1)m+1),

where d = gcd(m, per γ̄) and i = 1, 2, . . . , d− 1.

Lemma 4. Let K be a field and A = KQ/Rm
Q a truncated quiver algebra. For an element

γ̄ ∈ Qc
cm+e/Gcm+e(1 ≤ e ≤ m − 1) with γ = α1 · · ·αcm+e(α1, . . . , αcm+e ∈ Q1), the

following element corresponds to a non-zero homology class:

αcm+1 · · ·αcm+e ⊗ α1 · · ·αcm ∈ A⊗KQe
0
Γ(cm).

We note that there is the following chain map in [6], which we denote by θ. This chain
map θ induces a quasi-isomorphism idA ⊗ θ : A⊗Ae Cbar → A⊗Ae Q, which we denote by
θ for the sake of simplicity.
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A chain map π from Cibils’ projective resolution Q to P given in [1] induces a quasi-
isomorphism π̄ = idA⊗π : A⊗Ae Q −→ A⊗Ae P . We use the following composition map
of chain maps from the Hochschild complex to Sköldberg’s complex by Φ;

A⊗Ae Qn
θ←− A⊗Ae (Cbar)n = A⊗Ae A⊗(n+2) ψ←− A⊗(n+1)

−→ π̄

A⊗Ae Pn
φ−→ A⊗KQe

0
KΓ(n) ∼−→

⊕
i

⊕
γ̄∈Qc

i/Gi

Kγ̄,n,

where ψ is given by ψ(a0 ⊗ · · · ⊗ an) = a0 ⊗Ae (1⊗ a1 ⊗ · · · ⊗ an ⊗ 1).

4. The m-truncated cycles version of the “no loops conjecture”

Let K be a field, Q a finite quiver, RQ the arrow ideal of KQ and m ≥ 2 a positive
integer. In this section, we show that if an algebra KQ/I with I ⊂ Rm

Q has an m-
truncated cycle (see Definition 5), then the algebra has infinite Hochschild homology
dimension. Moreover, we show that the algebra satisfies an m-truncated cycles version of
the “no loops conjecture”.

If I ⊂ R2
Q is an ideal in the path algebra KQ, then a finite sequence α1, . . . , αu of

arrows which satisfies the equations t(αi) = s(αi+1) (i = 1, . . . , u− 1) and t(αu) = s(α1)
is called a cycle in KQ/I in [4].

Definition 5 ([4]). A cycle α1, . . . , αu in KQ/I is m-truncated for an integer m ≥ 2 if

αi · · ·αi+m−1 = 0 and αi · · ·αi+m−2 ̸= 0 in KQ/I

for all i, where the indices are modulo u.

By means of composition map Φ, we have the following our main theorem by the Lemma
3 and 4.

Theorem 6. Let K be a field, Q a finite quiver and I ⊂ KQ an ideal contained in Rm
Q .

Suppose that KQ/I contains an m-truncated cycle α1, . . . , αu. Then the following holds:

(i) Assume that gcd (m, per (α1 · · ·αu)) ̸= 1. For every n ≥ 1 with un ≡ 0 (mod m),
the element

α(c−1)m+2 · · ·αcm ⊗ α1 ⊗ α2 · · ·αm ⊗ αm+1

⊗ αm+2 · · ·α2m ⊗ α2m+1 ⊗ · · · ⊗ α(c−2)m+2 · · ·α(c−1)m ⊗ α(c−1)m+1,

where c = un/m, represents a nonzero element in HH2c−1(KQ/I).
(ii) Let e be an integer with 1 ≤ e ≤ m− 1. For every n ≥ 1 with un ≡ e (mod m), the

element ∑
0≤j1,...,jc≤m−2

α2c+1+j1+···+jc · · ·αun

⊗ α1 · · ·α1+j1 ⊗ α2+j1 ⊗ α3+j1 · · ·α3+j1+j2 ⊗ α4+j1+j2 ⊗ · · ·
⊗ α2c−1+j1+···+jc−1 · · ·α2c−1+j1+···+jc ⊗ α2c+j1+···+jc ,

where c = (un− e)/m, represents a nonzero element in HH2c(KQ/I).
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In particular, the Hochschild homology dimension HHdim (KQ/I) = ∞.

Corollary 7. Let K be a field, Q a finite quiver and I an admissible ideal in KQ with
I ⊂ Rm

Q . If the algebra KQ/I has finite global dimension, then it contains no m-truncated
cycles.

Example 8. Let B be an algebra given by the quiver with relations:
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αiαi+1αi+2 = β1β2β3 = β3γα2 = 0,
β2β3α1 = β2β3γ,

where the indices of αi are modulo 4 (1 ≤ i ≤ 4). Then B has the 3-truncated cycle
α1, α2, α3, α4. By the Theorem 6, we have HHdimB = ∞. Therefore, the global dimension
of B is infinite.
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et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Lectrue Notes in Mathematics 1404,
Springer, Berlin, 1989, 108–126.

[9] K. Igusa, Notes on the no loops conjecture, J. Pure Appl. Algebra 69 (1990), 161–176.
[10] K. Igusa, S. Liu and C. Paquette, A proof of the strong no loop conjecture, Adv. Math, 228 (2011),

no. 5, 2731–2742.
[11] T. Itagaki, K. Sanada, The dimension formula of the cyclic homology of truncated quiver algebras

over a field of positive characteristic, J. Algebra 404 (2014), 200–221.
[12] H. Lenzing, Nilpotence Elemente in Ringen von endlicher globaler Dimension, Math. Z. 108 (1969),

313–324.
[13] J-L. Loday, Cyclic Homology, Springer-Verlag, Berlin (1992).
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ON A GENERALIZATION OF COMPLEXES AND THEIR DERIVED
CATEGORIES.

OSAMU IYAMA AND HIROYUKI MINAMOTO

Abstract. When we want to understand the reason why the equation d2 = 0 has the
beautiful consequences, one way is to consider generalizations of it and research how its
properties vary. One natural candidate of a generalization is the notion of N -complex,
that is, gradeds object equipped with a morphism d of degree 1 such that dN = 0. This
was introduced by Kapranov [5] and Sarkaria [7] independently. Nowadays there is a
vast collection of literatures on the subject.

For an N -complex X, there are several cohomology functors. More precisely, for
1 ≤ r ≤ N − 1, we define a cohomorogy functor to be

Hi
(r)(X) :=

Ker[dr : Xi → Xi+r]

Im[dN−r : Xi−N+r → Xi]
.

As a new feature, it is observed that there are several relations between these cohomology
functors [5, 1].

On the other hands, Iyama-Kato-Miyachi [4] construct and study the homotopy cate-
gory KN (R), the derived category DN (R) of N -complexes. They showed that the derived
category DN (R) is equivalent as triangulated categories to the derived category (in the

ordinary sense) D(R ⊗k k
−→
AN−1). Inspired by their results, we introduce the notion of

A-complexes for a graded self-injective algebra A. We construct and study the homotopy
category, the derived category of and the cohomology functors. As a consequence, we
see that the relations between various cohomology functors of N -complexes comes from
representation theory of the graded algebra k[δ]/(δN ) with degk = 0, deg δ = 1.

1. N-complexes (Kapranov, Sarkaria, G. Kato, Dubois-Violette,
Hiramatsu-G. Kato, Iyama-K. Kato-Miyachi . . . )

1.1. N-complexes. Our setup is the followings:

• N ≥ 2 is an integer greater than 1.
• R is an algebra over a field k.

For simplicity, in this note N -(A-)complexes are that of R-modules.

Definition 1. An N -complex X ( of R-modules ) is a graded R-module
⊕

i∈Z X
i equipped

with an endomorphism dX of degree 1 (the differential of X) such that dNX = 0.

dNX = dX ◦ dX ◦ · · · dX (N times ).

· · · → X i−1 dX−→ X i dX−→ X i+1 → · · ·

The detailed version of this paper will be submitted for publication elsewhere.
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