On the Hochschild cohomology ring modulo nilpotence of the quiver algebra with quantum-like relations

Daiki Obara

Tokyo University of Science
September 72015
Nagoya University

1

Introduction

Notation

- K : field, $\operatorname{char} \boldsymbol{K}=\mathbf{0}$,
- A : finite dimensional K-algebra,
- $A^{e}:=A \otimes_{K} A^{\mathrm{op}}$: enveloping algebra,
- $\operatorname{HH}^{n}(A) \simeq \operatorname{Ext}_{A^{e}}^{n}(A, A): n$-th Hochschild cohomology group of A,
- $\mathrm{HH}^{*}(A) \simeq \oplus_{n \geq 0} \mathrm{HH}^{n}(A)$: Hochschild cohomology ring of A with Yoneda product,
- \mathcal{N} : ideal of $\mathrm{HH}^{*}(A)$ generated by all homogeneous nilpotent elements.
- $\mathrm{HH}^{*}(A) / \mathcal{N}$: Hochschild cohomology ring of \boldsymbol{A} modulo nilpotence.

Hochschild cohomology group

Hochschild cohomology group

Let \mathbb{P} be the projective \boldsymbol{A}-bimodule resolution of \boldsymbol{A}. Applying $\operatorname{Hom}_{\boldsymbol{A}^{e}}(-, \boldsymbol{A})$ to \mathbb{P}, we have the following complex $\operatorname{Hom}_{A^{e}}(\mathbb{P}, \boldsymbol{A})$:

$$
\operatorname{Hom}_{\boldsymbol{A}^{e}}\left(\boldsymbol{P}_{0}, \boldsymbol{A}\right) \rightarrow \operatorname{Hom}_{\boldsymbol{A}^{e}}\left(\boldsymbol{P}_{1}, \boldsymbol{A}\right) \rightarrow \operatorname{Hom}_{\boldsymbol{A}^{e}}\left(\boldsymbol{P}_{2}, \boldsymbol{A}\right) \rightarrow \cdots .
$$

Then, the \boldsymbol{n}-th Hochschild cohomology group is given by \boldsymbol{n}-th cohomology of $\operatorname{Hom}_{A^{e}}(\mathbb{P}, A)$.

$$
\left.\operatorname{HH}^{n}(\boldsymbol{A}) \simeq \operatorname{Ext}_{\boldsymbol{A}^{e}}^{n}(\boldsymbol{A}, \boldsymbol{A})=\operatorname{Ker}_{\operatorname{Hom}_{\boldsymbol{A}^{e}}\left(\boldsymbol{P}_{n+1}\right.}, \boldsymbol{A}\right) /{\operatorname{Im} \operatorname{Hom}_{\boldsymbol{A}^{e}}\left(\boldsymbol{P}_{n}, \boldsymbol{A}\right) .}
$$

The support variety of an A-module M

- M : A-module.
- $\phi_{M}: \operatorname{HH}^{*}(A) \xrightarrow{-\otimes_{A} M} \operatorname{Ext}_{A}^{*}(M, M)$ is a homomorphism of graded rings for an A-module M.
- $\operatorname{Ext}_{A}^{*}(M, M)$ is an $\mathrm{HH}^{*}(\boldsymbol{A})$-module.

Definition [[Snashall,Solberg (2004)], Definision 3.3]

The support variety of M is given by

$$
V(\boldsymbol{M})=\left\{\boldsymbol{m} \in \operatorname{MaxSpec} \mathrm{HH}^{*}(A) / \mathcal{N} \mid \operatorname{AnnExt}_{A}^{*}(\boldsymbol{M}, \boldsymbol{M}) \subseteq \boldsymbol{m}^{\prime}\right\}
$$

where $\operatorname{AnnExt}_{A}^{*}(M, M)$ is the annihilator of $\operatorname{Ext}_{A}^{*}(M, M)$ and m^{\prime} is the preimage in $\mathrm{HH}^{*}(\boldsymbol{A})$ of the ideal \boldsymbol{m} in $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$.

Properties of support varieties

Snashall and Solberg showed the following properties.
Theorem [SnSo(2004)]
(1) $V\left(M_{1} \oplus M_{2}\right)=V\left(M_{1}\right) \cup V\left(M_{2}\right)$,
(2) If $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is an exact sequence, then $V\left(M_{i_{1}}\right) \subseteq V\left(M_{i_{2}}\right) \cup V\left(M_{i_{3}}\right)$ whenever $\left\{i_{1}, i_{2}, i_{3}\right\}=\{1,2,3\}$,
(3) If $\operatorname{Ext}_{A}^{i}(M, M)=(0)$ for $i \gg 0$ or the projective or the injective dimension of M is finite, then $V(M)$ is trivial.

Question [Snashall(2009)]

Whether we can give necessary and sufficient conditions on a finite dimensional algebra \boldsymbol{A} for $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$ to be finitely generated as an algebra?

With respect to sufficient conditions, it is shown that $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$ is finitely generated as an algebra for various classes of algebras by many authors as follows:

- Any block of a group ring of a finite group (See [Evens(1961)], [Venkov(1959)])
- Finite dimensional algebras of finite global dimension (See [Happel(1989)])
- Finite dimensional self-injective algebras of finite representation type over an algebraically closed field (See [Green, Snashall, Solberg(2003)])
- Finite dimensional monomial algebras (See [Green, Snashall, Solberg(2006)])
- A class of special biserial algebras (See [Snashall, Taillefer(2010)])

Counter example of Snashall-Solberg conjecture [$\mathrm{Xu}(2008)]$, [Snashall(2009)]

Let $A=k Q / I$ where Q is the quiver

and $I=\left\langle a^{2}, b^{2}, a b-b a, a c\right\rangle$. Snashall showed the following Theorem.
[Sn(2009), Theorem 4.5]
(1) $\mathrm{HH}^{*}(A) / \mathcal{N} \cong \begin{cases}k \oplus k[a, b] b & \text { if char } k=2, \\ k \oplus k\left[a^{2}, b^{2}\right] b^{2} & \text { if char } k \neq 2 .\end{cases}$
(2) $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$ is not finitely generated as an algebra.

2

Quiver algebra with quantum-like relation

Let c and n_{i} be integers with $c \geq 2$ and $n_{i} \geq 2$ for $1 \leq i \leq c$. Let I be an ideal in $K\left\langle x_{1}, \ldots, x_{c}\right\rangle$ generated by

$$
x_{i}^{n_{i}} \quad \text { for } 1 \leq i \leq c, x_{j} x_{i}-q_{i, j} x_{i} x_{j} \quad \text { for } 1 \leq i<j \leq c,
$$

where $\boldsymbol{q}_{i, j}$ is non-zero element in K for $1 \leq i<j \leq c$.
$A=K\left\langle x_{1}, \ldots, x_{n}\right\rangle / I$ is a quantum complete intersection. Then we have $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$ as follows.

Theorem [Oppermann(2010) Theorem 5.5]

$\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$ is isomorphic to the following finitely generated \boldsymbol{K}-algebra.

$$
\begin{aligned}
& \mathrm{HH}^{*}(A) / \mathcal{N} \cong{ }_{K}\left\langle y_{1}^{p_{1} n_{1} / 2} \cdots y_{c}^{p_{c} n_{c} / 2} \in K\left[y_{1}, \ldots, y_{c}\right]\right| \\
& \prod_{j=1}^{c} q_{i, j}^{p_{j} n_{j} / 2}=1 \text { for all } i \text { with } p_{i} \text { even, } \\
& \left.\prod_{j=1}^{c} q_{i, j}^{\left.p_{j}-1\right) n_{j} / 2+1}=-1 \text { and } n_{i}=2 \text { for all } i \text { with } p_{i} \text { odd }\right\rangle .
\end{aligned}
$$

where $q_{i, i}=1$ and $q_{i, j}=q_{j, i}^{-1}$ for $1 \leq j<i \leq c$.
Then $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$ is finitely generated as an algebra.

Projective resolution of a quantum complete intersection

We consider the case of $c=2$ and $q_{1,2}=1$.
Let $A_{i}=K\left[x_{i}\right] /\left(x_{i}^{n_{i}}\right)$ for $1 \leq i \leq 2$. Then the projective bimodule resolution of A_{i} is

$$
\mathbb{P}_{i}: \boldsymbol{A}_{i}^{e} \stackrel{d_{(i, 1)}}{\leftarrow} \boldsymbol{A}_{i}^{e} \stackrel{d_{(i, 2)}}{\leftarrow} \boldsymbol{A}_{i}^{e} \stackrel{d_{(i, 3)}}{\longleftarrow} \boldsymbol{A}_{i}^{e} \stackrel{d_{(i, 4)}}{\hookleftarrow} \cdots,
$$

where

$$
\begin{array}{rlr}
d_{(i, j)}: 1 \otimes 1 & \mapsto 1 \otimes x_{i}-x_{i} \otimes 1 & \text { if } j \text { is odd } \\
1 \otimes 1 & \mapsto \sum_{k=0}^{n_{i}-1} x_{i}^{k} \otimes x_{i}^{n_{i}-1-k} & \text { if } j \text { is even. }
\end{array}
$$

Then the projective bimodule resolution of the quantum complete intersection A is the total complex of the following commutative diagram.

Projective resolution of a quantum complete intersection

where A-homomorphisms $d_{(1, j)}$ correspond to the projective resolution \mathbb{P}_{1}, and A-homomorphisms $d_{(2, j)}$ correspond to the projective resolution \mathbb{P}_{2}.

Quiver algebra defined by 2 cycles and a quantum-like relation [Obara(2012)]

Let $s_{1}, s_{2} \geq 2$ be integers. We consider the quiver algebra $A=k Q / I$. Q : the quiver with $s+t-1$ vertices and $s+t$ arrows as follows:

I : the ideal of $k Q$ generated by

$$
X_{1}^{s_{1} n_{1}}, X_{1}^{s_{1}} X_{2}^{s_{2}}-q_{1,2} X_{2}^{s_{2}} X_{1}^{s_{1}}, X_{2}^{s_{2} n_{2}}
$$

where $X_{i}:=\alpha_{(i, 1)}+\alpha_{(i, 2)}+\cdots+\alpha_{\left(i, s_{1}\right)}$, integers $n_{i} \geq 2$ for $1 \leq i \leq 2$ and $q_{1,2}$ is non-zero element in K.

Quiver algebra defined by 2 cycles and a quantum-like relation [Obara(2012)]

For simplicity, we consider the case of $s_{1}=s_{2}=2$ and $q_{1,2}=1$. Then $A=k Q / I$.
Q : the quiver with 3 vertices and 4 arrows as follows:

$$
e_{(1,2)} \stackrel{a_{(1,2)}}{\stackrel{a_{(1,1)}}{\sim}} e_{1} \xrightarrow{a_{(2,1)}} e_{(2,2)}
$$

I : the ideal of $k Q$ generated by

$$
X_{1}^{2 n_{1}}, X_{1}^{2} X_{2}^{2}-X_{2}^{2} X_{1}^{2}, X_{2}^{2 n_{2}}
$$

where $X_{i}:=a_{(i, 1)}+a_{(i, 2)}$ and integers $n_{i} \geq 2$ for $1 \leq i \leq 2$.

Projective resolution of an algebra defined by 2 cycles and a quantum-like relation

The complex

$$
P_{0} \stackrel{d_{(1,0)}}{\longleftarrow} Q_{(1,0)} \stackrel{d_{(2,0)}}{\longleftarrow} Q_{(2,0)} \stackrel{d_{(3,0)}}{\longleftarrow} Q_{(3,0)} \stackrel{d_{(4,0)}}{\longleftarrow} \cdots \longleftarrow
$$

correspond to the projective resolution of Nakayama algebra $K Q_{1} /\left\langle X_{1}^{2 n_{1}}\right\rangle$ and

$$
P_{0} \stackrel{d_{(0,1)}}{\longleftarrow} Q_{(0,1)} \stackrel{d_{(0,2)}}{\leftarrow} Q_{(0,2)} \stackrel{d_{(0,3)}}{\leftrightarrows} Q_{(0,3)} \stackrel{d_{(0,4)}}{\longleftarrow} \cdots \longleftarrow
$$

correspond to the projective resolutions of Nakayama $K Q_{2} /\left\langle X_{2}^{2 n_{2}}\right\rangle$ where
$Q_{1}: e_{(1,2)} \xrightarrow[a_{(1,1)}]{\stackrel{a_{(1,2)}}{\gtrless}} e_{1}$ and $Q_{2}: e_{1} \xrightarrow[a_{(2,2)}]{\stackrel{a_{(2,1)}}{\gtrless}} e_{(2,2)}$ and $X_{i}:=a_{(i, 1)}+a_{(i, 2)}$.

δ correspond to the projective bimodule resolution of Nakayama algebra defined by 1 loop $K\left[e_{1} X_{1}^{2} e_{1}\right] /\left\langle e_{1} X_{1}^{2 n_{1}} e_{1}\right\rangle$.
σ correspond to the projective bimodule resolution of Nakayama algebra defined by 1 loop $K\left[e_{1} X_{2}^{2} e_{1}\right] /\left\langle e_{1} X_{2}^{2 n_{2}} e_{1}\right\rangle$.
We have the projective bimodule resolution of this algebra as total complex of this commutative diagram.

Projective resolution of an algebra defined by 2 cycles and a quantum-like relation

In fact, we have the A^{e}-homomorphisms δ and σ as follows.

$$
\begin{aligned}
& \delta_{\left(l_{1}, l_{2}\right)}: e_{1} \otimes e_{1} \mapsto \begin{cases}e_{1} \otimes e_{1} X_{1}^{2}-X_{1}^{2} e_{1} \otimes e_{1} & \text { if } l_{1} \text { is odd }, \\
\sum_{k=0}^{n_{1}-1} X_{1}^{2 k} e_{1} \otimes e_{1} X_{1}^{2\left(n_{1}-1-k\right)} & \text { if } l_{1} \text { is even },\end{cases} \\
& \sigma_{\left(l_{1}, l_{2}\right)}: e_{1} \otimes e_{1} \mapsto \begin{cases}e_{1} \otimes e_{1} X_{2}^{2}-X_{2}^{2} e_{1} \otimes e_{1} & \text { if } l_{2} \text { is odd } \\
\sum_{k=0}^{n_{1}-1} X_{2}^{2 k} e_{1} \otimes e_{1} X_{2}^{2\left(n_{2}-1-k\right)} & \text { if } l_{2} \text { is even. }\end{cases}
\end{aligned}
$$

Hohschild cohomology ring modulo nilpotence

In [Obara(2015)], we determine the Hochoschild cohomology ring modulo nilpotence of a quiver algebra defined by two cycles and a quantum-like relation.

Theorem [Obara(2015)]

If $q_{1,2}$ is a root of unity, then $H^{*}(A) / \mathcal{N}$ is isomorphic to the polynomial ring of two variables.
If $\boldsymbol{q}_{1,2}$ is not a root of unity, $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N} \cong \boldsymbol{K}$.
In fact, in the case of $s_{1}=s_{2}=2$ and $q_{1,2}=1$, we have the Hochschild cohomology ring of \boldsymbol{A} modulo nilpotence as follows:

$$
\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}=\boldsymbol{k}[\boldsymbol{x}, \boldsymbol{y}]
$$

where $x=e_{1}+e_{(1,2)}, y=e_{1}+e_{(2,2)} \in \operatorname{HH}^{2}(A)$.

Conjecture

Now, we have the following conjecture.

Conjecture

The projective bimodule resolution of the finite dimensional algebra with quantum-like relations is given by a total complex of projective bimodule resolutions depending on each relation.

With respect to this conjecture, we have the projective bimodule resolutions of the following algebras.

Example 1: Quiver algebra defined by 3 cycles and quantum-like relations 1

Let Q be the quiver as follows:

I : the ideal of $K Q$ generated by

$$
X_{i}^{2 n_{i}} \text { for } 1 \leq i \leq 3, \quad X_{i}^{2} X_{j}^{2}-X_{j}^{2} X_{i}^{2} \text { for } 1 \leq i<j \leq 3
$$

where $X_{i}:=a_{(i, 1)}+a_{(i, 2)}, n_{i}$ are integers with $n_{i} \geq 2$ for $1 \leq i \leq 3$. We consider the quiver algebra $A=K Q / I$.

Projective resolution

We have the projective bimodule resolution of this algebra as total complex of the following commutative diagram. The complex

$$
P_{0} \stackrel{d_{(1,0)}}{\leftarrow} Q_{(1,0)} \stackrel{d_{(2,0)}}{\leftarrow} Q_{(2,0)} \stackrel{d_{(3,0)}}{\leftarrow} Q_{(3,0)} \stackrel{d_{(4,0)}}{\leftarrow} \cdots \longleftarrow
$$

correspond to the projective resolutions of the quiver algebra $K Q_{1} /\left\langle X_{1}^{2 n_{1}}, X_{2}^{2 n_{2}}, X_{1}^{2} X_{2}^{2}-X_{2}^{2} X_{1}^{2}\right\rangle$ and

$$
P_{0} \stackrel{d_{(0,1)}}{\leftarrow} Q_{(0,1)} \stackrel{d_{(0,2)}}{\leftarrow} Q_{(0,2)} \stackrel{d_{(0,3)}}{\leftarrow} Q_{(0,3)} \stackrel{d_{(0,4)}}{\leftarrow} \cdots \longleftarrow
$$

correspond to the projective resolutions of Nakayama algebra $K Q_{2} /\left\langle X_{3}^{2 n_{3}}\right\rangle$
where $Q_{1}: e_{(1,2)} \stackrel{a_{(1,2)}}{a_{(1,1)}} e_{1} \xrightarrow[a_{(2,2)}]{a_{(2,1)}} e_{(2,2)}$ and $Q_{2}: e_{1} \xrightarrow[a_{(3,2)}]{\stackrel{a_{(3,1)}}{\longrightarrow}} e_{(3,2)}$ where $X_{i}:=a_{(i, 1)}+a_{(i, 2)}$.

δ is the projective bimodule resolution depending on the relations $X_{1}^{2 n_{1}}$, $X_{2}^{2 n_{2}}, X_{1}^{2} X_{2}^{2}-X_{2}^{2} X_{1}^{2}$ and σ is the projective bimodule resolution depending on the relation $X_{3}^{2 n_{3}}$ as follows.
Let $\varepsilon_{(i, j),\left(l_{1}, l_{2}\right)}=e_{1} \otimes e_{1}$ for $i, j \geq 1$ and $l_{1}, l_{2} \geq 0$ such that $l_{1}+l_{2}=i$.

$$
Q_{(i, j)}=\coprod_{\substack{i, j \geq 1 \\ l_{1} \geq l_{2} \geq 0 \\ l_{1}+l_{2}=i}} A \varepsilon_{(i, j),\left(l_{1}, l_{2}\right)} A .
$$

Projective resolution

$$
\begin{aligned}
& \delta_{(i, j)}: \varepsilon_{(i, j),\left(l_{1}, l_{2}\right)} \mapsto \\
& \begin{cases}\varepsilon_{(i-1, j),\left(l_{1}-1, l_{2}\right)} X_{1}^{2}-X_{1}^{2} \varepsilon_{(i-1, j),\left(l_{1}-1, l_{2}\right)} \\
+\varepsilon_{(i-1, j),\left(l_{1}, l_{2}-1\right)} X_{2}^{2}-X_{2}^{2} \varepsilon_{(i-1, j),\left(l_{1}, l_{2}-1\right)} & \text { if } l_{1}, l_{2} \text { are odd, } \\
\sum_{k=0}^{n_{1}-1} X_{1}^{2 k} \varepsilon_{(i-1, j),\left(l_{1}-1, l_{2}\right)} X_{1}^{2\left(n_{1}-1-k\right)} \\
+\sum_{k^{\prime}=0}^{n_{2}-1} X_{2}^{2 k^{\prime}} \varepsilon_{(i-1, j),\left(l_{1}, l_{2}-1\right)} X_{2}^{2\left(n_{2}-1-k^{\prime}\right)} & \text { if } l_{1}, l_{2} \text { are even, } \\
\varepsilon_{(i-1, j),\left(l_{1}-1, l_{2}\right)} X_{1}^{2}-X_{1}^{2} \varepsilon_{(i-1, j),\left(l_{1}-1, l_{2}\right)}^{n_{2}-1} \\
+\sum_{k^{\prime}=0}^{2 k^{\prime}} \varepsilon_{(i-1, j),\left(l_{1}, l_{2}-1\right)} X_{2}^{2\left(n_{2}-1-k^{\prime}\right)} & \text { if } l_{1} \text { is odd and } l_{2} \text { are even } \\
\sum_{k=0}^{n_{1}-1} X_{1}^{2 k} \varepsilon_{(i-1, j),\left(l_{1}-1, l_{2}\right)} X_{1}^{2\left(n_{1}-1-k\right)} \\
+\varepsilon_{(i-1, j),\left(l_{1}, l_{2}-1\right)} X_{2}^{2}-X_{2}^{2} \varepsilon_{(i-1, j),\left(l_{1}, l_{2}-1\right)} & \text { if } l_{1} \text { is even and } l_{2} \text { is odd, }\end{cases}
\end{aligned}
$$

Hochschild cohomology ring modulo nilpotence

$$
\sigma_{(i, j)}: \varepsilon_{(i, j),\left(l_{1}, l_{2}\right)} \mapsto \begin{cases}\varepsilon_{(i, j-1),\left(l_{1}, l_{2}\right)} X_{3}^{2}-X_{3}^{2} \varepsilon_{(i, j),\left(l_{1}, l_{2}\right)} & \text { if } j \text { is odd } \\ \sum_{k=0}^{n_{1}-1} X_{3}^{2 k} \varepsilon_{(i, j-1),\left(l_{1}, l_{2}\right)} X_{3}^{2\left(n_{3}-1-k\right)} & \text { if } j \text { is even. }\end{cases}
$$

Then the Hochschild cohomology ring of A modulo nilpotence is the polynomial ring of 3 variables.

$$
\operatorname{HH}^{*}(A) / \mathcal{N} \simeq K\left[x_{1}, x_{2}, x_{3}\right] \text { where } x_{i}=e_{1}+e_{(i, 2)} \in \operatorname{HH}^{2}(A) .
$$

Moreover, in general, we have the following result.

Theorem [Obara]

The Hochschild cohomology ring modulo nilpotence of a quiver algebra defined by c cycles and quantum-like relations correspond with that of c-th quantum complete intersection.

In fact, we have the \boldsymbol{K}-basis elements of $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$ as follows, and these elements form a \boldsymbol{K}-basis of $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$.
(1) If n is even, and i with $1 \leq i \leq c$ satisfy the following conditions, then $\sum_{k_{i}=1}^{s_{i}} e_{\left(i, k_{i}\right)}^{n} \in \mathrm{HH}^{n}(A)$ is K-basis element of $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$.

$$
\begin{aligned}
& q_{i, j}^{n_{i} n / 2}=1 \text { for } 1 \leq j \leq c \text { such that } j>i, \\
& q_{j, i}^{n_{i} n / 2}=1 \text { for } 1 \leq j \leq c \text { such that } j<i .
\end{aligned}
$$

(2) If n_{1}, \ldots, n_{c} and $\left(l_{1}, \ldots, l_{c}\right) \in L_{n}$ satisfy the following conditions, then $e_{\left(l_{1}, \ldots, l_{c}\right)}^{n} \in \mathrm{HH}^{n}(\boldsymbol{A})$ is \boldsymbol{K}-basis element of $\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N}$.
l_{i} is even or l_{i} is odd and $n_{i}=2$ for $1 \leq i \leq c$,

$$
\begin{aligned}
& \prod_{h_{1}=1}^{c-j} q_{j, j+h_{1}}^{n_{j+h_{1}} l_{j+h_{1}} / 2} \prod_{h_{2}=1}^{j-1} q_{h_{2}, j}^{-n_{h_{2}} l_{h_{2}} / 2}=1 \text { for } 1 \leq j \leq c \text { s.t. } l_{j}: \text { even }(\neq 0), \\
& \prod_{h_{1}=1}^{c-j} q_{j, j+h_{1}}^{n_{j+h_{1}} l_{j+h_{1}} / 2} \prod_{h_{2}=1}^{j-1} q_{h_{2}, j}^{-n_{h_{2}} l_{h_{2}} / 2}=-1 \quad \text { for } 1 \leq j \leq c \text { s.t. } l_{j} \text { is odd, }
\end{aligned}
$$

And applying the functor $\operatorname{Hom}_{A^{e}}\left(A e_{1} \otimes e_{1} A,-\right)$ to the projective bimodule resolution of A, we have the projective bimodule resolution of a quantum complete intersection $e_{1} A e_{1}$. Then we have the K-basis elements of $\mathrm{HH}^{*}\left(e_{1} A e_{1}\right) / \mathcal{N}$ as follows, and these elements form a \boldsymbol{K}-basis of $\mathrm{HH}^{*}\left(e_{1} \boldsymbol{A} \boldsymbol{e}_{1}\right) / \mathcal{N}$.
(1) If n is even, and i with $1 \leq i \leq c$ satisfy the following conditions, then $e_{1}+\sum_{k_{i}=2}^{s_{i}}\left(e_{1} X_{i} e_{1}\right)_{k_{i}} \in \operatorname{HH}^{n}\left(e_{1} A e_{1}\right)$ is K-basis element of $\mathrm{HH}^{*}\left(e_{1} \boldsymbol{A} e_{1}\right) / \mathcal{N}$.

$$
\begin{aligned}
& q_{i, j}^{n_{i} n / 2}=1 \text { for } 1 \leq j \leq c \text { such that } j>i, \\
& q_{j, i}^{n_{i} n / 2}=1 \text { for } 1 \leq j \leq c \text { such that } j<i .
\end{aligned}
$$

(c) $e_{\left(l_{1}, \ldots, l_{c}\right)}^{n} \in \mathrm{HH}^{n}\left(e_{1} A e_{1}\right)$ is K-basis element of $\mathrm{HH}^{*}\left(e_{1} A e_{1}\right) / \mathcal{N}$ in the same condition in above page.

Example 2: Quiver algebra with 3 cycles and quantum-like relations

Let Q be the quiver as follows:

$$
e_{(1,2)} \stackrel{a_{(1,1)}}{\leftrightarrows} e_{(1,1)} \stackrel{a_{(2,1)}}{\underset{a_{(1,2)}}{\leftrightarrows}} e_{(2,2)} \stackrel{a_{(3,1)}}{\underset{a_{(3,2)}}{\leftrightarrows}} e_{(3,2)}
$$

I : the ideal of $K Q$ generated by

$$
\begin{aligned}
& X_{i}^{2 n_{i}} \text { for } 1 \leq i \leq 3, \quad X_{i}^{2} X_{2}^{2}-X_{2}^{2} X_{i}^{2} \text { for } i=1,3 \\
& a_{(1,2)} a_{(2,1)} X_{2}^{2 l_{1}} a_{(3,1)}, a_{(3,2)} a_{(2,2)} X_{2}^{2 l_{2}} a_{(1,1)} \text { for } 0 \leq l_{1}, l_{2} \leq n_{2}-1
\end{aligned}
$$

where $X_{i}:=a_{(i, 1)}+a_{(i, 2)}, n_{i}$ are integers with $n_{i} \geq 2$ for $1 \leq i \leq 3$. We consider the quiver algebra $A=K Q / I$.

Projective resolution

We have the projective bimodule resolution of this algebra as total complex of the following commutative diagram. The complex

$$
P_{0} \stackrel{d_{(1,0)}}{\longleftarrow} Q_{(1,0)} \stackrel{d_{(2,0)}}{\leftarrow} Q_{(2,0)} \stackrel{d_{(3,0)}}{\longleftarrow} Q_{(3,0)} \stackrel{d_{(4,0)}}{\longleftarrow} \cdots \longleftarrow
$$

correspond to the projective resolution of the quiver algebra $K Q_{1} /\left\langle X_{1}^{2 n_{1}}, X_{2}^{2 n_{2}}, X_{1}^{2} X_{2}^{2}-X_{2}^{2} X_{1}^{2}\right\rangle$ and

$$
P_{0} \stackrel{d_{(0,1)}}{\leftarrow} Q_{(0,1)} \stackrel{d_{(0,2)}}{\leftarrow} Q_{(0,2)} \stackrel{d_{(0,3)}}{\leftarrow} Q_{(0,3)} \stackrel{d_{(0,4)}}{\longleftarrow} \cdots \longleftarrow
$$

correspond to the projective resolution of Nakayama algebra $K Q_{2} /\left\langle X_{3}^{2 n_{3}}\right\rangle$
where $Q_{1}: e_{(1,2)} \xrightarrow[{\underset{a_{(1,1)}}{\stackrel{a_{(1,2)}}{\longrightarrow}} e_{(1,1)} \xrightarrow[\widetilde{a_{(2,2)}}]{\stackrel{a_{(2,1)}}{\longrightarrow}} e_{(2,2)} \text { and } Q_{2}: e_{(2,2)} \xrightarrow[\widetilde{a_{(3,2)}}]{\stackrel{a_{(3,1)}}{\longrightarrow}} e_{(3,2)}}]{ }$
where $X_{i}:=a_{(i, 1)}+a_{(i, 2)}$.

δ is the projective bimodule resolution depending on the relations $X_{1}^{2 n_{1}}$, $X_{2}^{2 n_{2}}, X_{1}^{2} X_{2}^{2}-X_{2}^{2} X_{1}^{2}$ and σ is the projective bimodule resolution depending on the relation $X_{3}^{2 n_{3}}$ as follows.

$\xi_{(i, j, k)}$ is the projective bimodule resolution depending on the relations $a_{(1,2)} a_{(2,1)} X_{2}^{2 l_{1}} a_{(3,1)}$ and $a_{(3,2)} a_{(2,2)} X_{2}^{2 l_{2}} a_{(1,1)}$ as follows. And δ^{\prime} and σ^{\prime} are similar to δ and σ.

For $i, j \geq 1$, we define the projective A-bimodule $Q_{(i, j)}$ as follows:

$$
Q_{(i, j)}=A \varepsilon_{(i, j),\langle(2,2),(2,2)\rangle} A \oplus \coprod_{\substack{l_{1}, l_{2} \geq 1 \\ l_{1}+l_{2}=i}} A \varepsilon_{(i, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right)} A
$$

$\oplus \coprod_{\substack{l_{1}, l_{2} \geq 1 \\ l_{1}+l_{2}=i}} A \varepsilon_{(i, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right)} A$
$\oplus\left\{\begin{array}{c}A \varepsilon_{(i, j),\langle(1,1),(2,2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j),\langle(2,2),(1,1)\rangle,(i, 0)} A \\ \text { if } i, j \text { are even, } \\ A \varepsilon_{(i, j),\langle(1,2),(3,2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j),\langle(3,2),(1,2)\rangle,(i, 0)} A \\ \text { if } i, j \text { are odd, } \\ A \varepsilon_{(i, j),\langle(1,2),(2,2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j),\langle(2,2),(1,2)\rangle,(i, 0)} A\end{array}\right.$
if i is odd and j is even,

$$
A \varepsilon_{(i, j),\langle(1,1),(3,2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j),\langle(3,2),(1,1)\rangle,(i, 0)} A
$$

if i is even and j is odd.
where $\varepsilon_{(i, j),\left\langle\left(t_{1}, t_{2}\right),\left(t_{3}, t_{4}\right)\right\rangle,\left(l_{1}, l_{2}\right)}=e_{\left(t_{1}, t_{2}\right)} \otimes e_{\left(t_{3}, t_{4}\right)}$ and $\varepsilon_{(i, j),\langle(2,2),(2,2)\rangle}=e_{(2,2)} \otimes e_{(2,2)}$.

$$
\begin{aligned}
& \delta_{(i, j)}: \varepsilon_{(i, j),\{(2,2),(2,2)\}} \mapsto \\
& \begin{cases}\varepsilon_{(i-1, j),\langle(2,2),(2,2)\langle } X_{2}^{2}-X_{2}^{2} \varepsilon_{(i-1, j),\langle(2,2),(2,2)\rangle} & \text { if } i \text { is odd, }, \\
\sum_{k=0}^{n_{2}-1} X_{2}^{2 k} \varepsilon_{(i-1, j),\langle(2,2),(2,2)\rangle} X_{2}^{2\left(n_{2}-1-k\right)} & \text { if } i \text { is even, }\end{cases} \\
& \varepsilon_{(i, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right)} \mapsto \\
& \int \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}-1\right)} X_{2}^{2}-X_{2}^{2} \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}-1\right)} \\
& -X_{1}^{2} \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}-1, l_{2}\right)} \quad \text { if } l_{1}, l_{2} \text { are odd, } \\
& \sum_{k=0}^{n_{2}-1} X_{2}^{2 k} \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}-1\right)} X_{2}^{2\left(n_{2}-1-k\right)} \\
& \begin{array}{l}
k=0 \\
+X_{1}^{2\left(n_{1}-1\right)} \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}-1, l_{2}\right)} \quad \text { if } l_{1}, l_{2} \text { are even, }
\end{array} \\
& \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}-1\right)} X_{2}^{2}-X_{2}^{2} \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}-1\right)} \\
& -X_{1}^{2\left(n_{1}-1\right)} \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}-1, l_{2}\right)} \quad \text { if } l_{1} \text { is even and } l_{2} \text { is odd, } \\
& \begin{array}{l}
\sum_{k=0}^{n_{2}-1} X_{2}^{2 k} \varepsilon_{(i-1, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right.} \\
+X_{1}^{2} \varepsilon_{(i-1, j),\left\langle(1,1),(2,2)\left\langle,\left(l_{1}-1, l_{2}\right)\right.\right.}
\end{array}
\end{aligned}
$$

Projective resolution

$$
\begin{aligned}
& \varepsilon_{(i, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right)} \mapsto \\
& \begin{cases}\varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}-1\right)} X_{2}^{2}-X_{2}^{2} \varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}-1\right)} \\
-\varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}-1, l_{2}\right)} X_{1}^{2} & \text { if } l_{1}, l_{2} \text { are odd, } \\
\sum_{k=0}^{n_{2}-1} X_{2}^{2 k} \varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}-1\right)} X_{2}^{2\left(n_{2}-1-k\right)} \\
+\varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}-1, l_{2}\right)} X_{1}^{2\left(n_{1}-1\right)} & \text { if } l_{1}, l_{2} \text { are even }, \\
\varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}-1\right)} X_{2}^{2}-X_{2}^{2} \varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}-1\right)} \\
-\varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}-1, l_{2}\right)} X_{1}^{2\left(n_{1}-1\right)} & \text { if } l_{1} \text { is even and } l_{2} \text { is odd, } \\
n_{2}-1 & X_{2}^{2 k} \varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}-1\right)} X_{2}^{2\left(n_{2}-1-k\right)} \\
\sum_{k=0} \\
+\varepsilon_{(i-1, j),\langle(2,2),(1,1)\rangle,\left(l_{1}-1, l_{2}\right)} X_{1}^{2} & \text { if } l_{1} \text { is odd and } l_{2} \text { is even. }\end{cases}
\end{aligned}
$$

Projective resolution

$$
\begin{aligned}
& \sigma_{(i, j)}: \varepsilon_{(i, j),\langle(2,2),(2,2)\rangle} \mapsto \\
& \begin{cases}\varepsilon_{(i, j-1),\langle(2,2),(2,2)\rangle} X_{3}^{2}-X_{3}^{2} \varepsilon_{(i, j),\langle(2,2),(2,2)\rangle} & \text { if } j \text { is odd, } \\
\sum_{k=0}^{n_{3}-1} X_{3}^{2 k} \varepsilon_{(i, j-1),\langle(2,2),(2,2)\rangle} X_{3}^{2\left(n_{3}-1-k\right)} & \text { if } j \text { is even. }\end{cases} \\
& \varepsilon_{(i, j),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right)} \mapsto \\
& \begin{cases}\varepsilon_{(i, j-1),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right)} X_{3}^{2} & \text { if } j \text { is odd, } \\
\varepsilon_{(i, j-1),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right)} X_{3}^{2\left(n_{3}-1\right)} & \text { if } j \text { is even. }\end{cases} \\
& \varepsilon_{(i, j),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right)} \mapsto \\
& \begin{cases}X_{3}^{2} \varepsilon_{(i, j-1),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right)} & \text { if } j \text { is odd }, \\
X_{3}^{2\left(n_{3}-1\right)} \varepsilon_{(i, j-1),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right)} & \text { if } j \text { is even. }\end{cases}
\end{aligned}
$$

In the case of \boldsymbol{k} is odd,
$Q_{(i, j, k)}=\coprod_{\substack{l_{1}+l_{2}=i \\ l_{1} \geq 2, l_{2} \geq 1}} \coprod_{\substack{l_{3}+l_{4}=k \\ l_{1}, l_{2} \geq 0}}\left(A \varepsilon_{(i, j, k),\langle(1,1),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{3}, l_{4}\right)} A\right.$
$\left.\oplus A \varepsilon_{(i, j, k),\langle(2,2),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{3}, l_{4}\right)} A\right)$
$\underset{\substack{l_{3}+l_{4}=k+1 \\ l_{3}, l_{4} \text { are odd }}}{ } A \varepsilon_{(i, j, k),\langle(\mathbf{1}, 1),(\mathbf{1}, \mathbf{1})\rangle,(\mathbf{1}, i-1),\left(l_{3}, l_{4}\right)} A$
$\underset{l_{l_{3}+l_{4}=k+1}^{l_{3}, l_{4} \text { are even }}}{\mathrm{l}_{2}} \boldsymbol{A} \varepsilon_{(i, j, k),\langle(2,2),(2,2)\rangle,(1, i-1),\left(l_{3}, l_{4}\right)} A$
$\int \coprod_{l_{3}+l_{4}={ }_{k}}\left(A \varepsilon_{(i, j, k),\langle(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{1})\rangle,(i, 0),\left(l_{3}, l_{4}\right)} A\right.$ $t_{1}, l_{2} \geq 0$
$\left.\oplus A \varepsilon_{(i, j, k),\langle(2,2),(2,2)\rangle,(i, 0),\left(l_{3}, l_{4}\right)} A\right) \quad$ if i, j are even,
$\oplus \begin{cases} & \varepsilon_{(i, j, k),\langle(2,2),(\mathbf{3}, 2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j, k),\langle(\mathbf{3}, 2),(2,2)\rangle,(i, 0)} A\end{cases}$ if i is even and j is odd, $A \varepsilon_{(i, j, k),\langle(1,1),(1,2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j, k),\langle(1,2),(1,1)\rangle,(i, 0)} A$ if i is odd and j is even,

In the case of k is even,
$Q_{(i, j, k)}=\coprod_{\substack{l_{1} \geq l_{1}, l_{2}=i=1}} \coprod_{\substack{l_{3}+l_{4}=k \\ l_{1}, l_{2} \geq 0}}\left(A \varepsilon_{(i, j, k),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{3}, l_{4}\right)} A\right.$
$\left.\oplus A \varepsilon_{(i, j, k),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{3}, l_{4}\right)} A\right)$
$\oplus \underset{l_{l_{3}+l_{4}=k+1}^{l_{3} \text { :even, } l_{4}: \text { odd }}}{ } A \varepsilon_{(i, j, k),\langle(1,1),(2,2)\rangle,(1, i-1),\left(l_{3}, l_{4}\right)} A$
$\oplus \underset{l_{l_{3}+l_{4}=k+1}^{l_{3}: \text { odd }, l_{4}: \text { :even }}}{ } A \varepsilon_{(i, j, k),\langle(2,2),(1,1)\rangle,(1, i-1),\left(l_{3}, l_{4}\right)} A$
$\left(\coprod_{l_{3}+l_{4}={ }_{k}}\left(A \varepsilon_{(i, j, k),\langle(\mathbf{1}, \mathbf{1}),(2,2)\rangle,(i, 0),\left(l_{3}, l_{4}\right)} A\right.\right.$

$$
t_{1}, t_{2} \geq 0
$$

$\left.\oplus A \varepsilon_{(i, j, k),\langle(2,2),(1,1)\rangle,(i, 0),\left(l_{3}, l_{4}\right)} A\right) \quad$ if i, j are even,
$\oplus\left\{\begin{array}{r}A \varepsilon_{(i, j, k),\langle(1,1),(3,2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j, k),\langle(3,2),(1,1)\rangle,(i, 0)} A \\ \text { if } i \text { is even and } j \text { is odd, }\end{array}\right.$
$A \varepsilon_{(i, j, k),\langle(2,2),(1,2)\rangle,(i, 0)} A \oplus A \varepsilon_{(i, j, k),\langle(1,2),(2,2)\rangle,(i, 0)} A$
if i is odd and j is even,

We have the A^{e}-homomorphism ξ as follows:

$$
\begin{aligned}
& \xi_{(i, j, k)}:\left\{\begin{array}{l}
\varepsilon_{(i, j, k),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}\right) \mapsto} \\
\varepsilon_{(i, j, k-1),\langle(1,1),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}-1, l_{2}^{\prime}\right)} a_{(2,1)} X_{3}^{2} \\
-X_{1}^{2} a_{(2,1)} \varepsilon_{(i, j, k-1),\langle(2,2),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}-1\right),} \quad \text { if } k \text { is even }, \\
\varepsilon_{(i, j, k),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}\right) \mapsto} \\
\varepsilon_{(i, j, k-1),\langle(2,2),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}-1, l_{2}^{\prime}\right)} a_{(2,2)} X_{1}^{2} \\
-X_{3}^{2} a_{(2,2)} \varepsilon_{(i, j, k-1),\langle(1,1),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}-1\right),} \\
\xi_{(i, j, k)}: \\
\left\{\begin{array}{l}
\varepsilon_{(i, j, k),\langle(1,1),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}\right) \mapsto} \mapsto \\
\varepsilon_{(i, j, k-1),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}-1, l_{2}^{\prime}\right)} a_{(2,2)} X_{1}^{2} \\
\varepsilon_{(i, j, k),\langle(2,2),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}\right) \mapsto}^{2} a_{(2,1)} \varepsilon_{(i, j, k-1),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}-1\right)} \\
\varepsilon_{(i, j, k-1),\langle(2,2),(1,1)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}-1, l_{2}^{\prime}\right)} a_{(2,1)} X_{3}^{2} \\
-X_{3}^{2} a_{(2,2)} \varepsilon_{(i, j, k-1),\langle(1,1),(2,2)\rangle,\left(l_{1}, l_{2}\right),\left(l_{1}^{\prime}, l_{2}^{\prime}-1\right)},
\end{array}\right. \\
\text { if } k \text { is odd. }
\end{array}\right.
\end{aligned}
$$

Projective resolution

We denote the total complex of above complexes by

$$
\mathbb{P}: 0 \leftarrow A \stackrel{\pi}{\longleftarrow} P_{0} \stackrel{d_{1}}{\leftarrow} P_{1} \leftarrow \cdots \stackrel{d_{n}}{\leftarrow} P_{n} \leftarrow \cdots .
$$

We consider the complex $\mathbb{P} \otimes_{A} A / \operatorname{rad} A$. Then we have the following rusult.

Proposition

The complex $\mathbb{P} \otimes_{A} A / \operatorname{rad} \boldsymbol{A}$ is exact.
Therefore \mathbb{P} is a projective bimodule resolution of A by [Theorem 2.8 Green,Snashall(2004)].
Then the Hochschild cohomology ring of A modulo nilpotence is the polynomial ring.

$$
\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N} \simeq \boldsymbol{K}\left[x_{2}\right] \text { where } x_{2}=e_{(1,1)}+e_{(2,2)} \in \operatorname{HH}^{2}(\boldsymbol{A}) .
$$

Remark

The Hochschild cohomology ring modulo nilpotence of A corresponds to that of B where $B=K Q / I$ is the quiver algebra defined by the following quiver Q and ideal I.

$$
\left.Q: a_{(1,1)} \bigodot e_{1} \stackrel{a_{(2,1)}}{\underset{a_{(2,2)}}{F}} e_{2}\right\rceil a_{(3,1)}
$$

I : the ideal of $K Q$ generated by

$$
\begin{aligned}
& a_{(1,1)}^{2},\left(a_{(2,1)}+a_{(2,2)}\right)^{4}, a_{(3,1)}^{2} \\
& a_{(1,1)}\left(a_{2,1} a_{2,2}\right)-\left(a_{2,1} a_{2,2}\right) a_{(1,1)},\left(a_{2,2} a_{2,1}\right) a_{(3,1)}-a_{(3,1)}\left(a_{2,2} a_{2,1}\right) \\
& a_{(1,1)} a_{(2,1)} a_{(3,1)}, a_{(3,1)} a_{(2,2)} a_{(1,1)}
\end{aligned}
$$

Example 3: Quiver algebra with 3 cycles and quantum-like relations 2

Let Q be the quiver as follows:

I : the ideal of $K Q$ generated by

$$
\begin{array}{ll}
X_{i}^{2 n_{i}} \text { for } 1 \leq i \leq 3, & X_{1}^{2} X_{j}^{2}-X_{j}^{2} X_{1}^{2} \text { for } 2 \leq j \leq 3, \\
a_{(2,2)} a_{(3,1)}, a_{(3,2)} a_{(2,1)} .
\end{array}
$$

where $X_{i}:=a_{(i, 1)}+a_{(i, 2)}, n_{i}$ are integers with $n_{i} \geq 2$ for $1 \leq i \leq 3$. We consider the quiver algebra $A=K Q / I$. Then, we have the projective bimodule resolution of this algebra as total complex of the following commutative diagram.

$\xi_{(i, j, k)}$ is the projective resolution depending on the relations $a_{(2,2)} a_{(3,1)}$ and $a_{(3,2)} a_{(2,1)}$ as follows. And δ^{\prime} and σ^{\prime} are similar to δ and σ.

$$
Q_{(i, j, k)}=\coprod_{l=1}^{2} \amalg_{\substack{l_{1} \geq 0, l_{2} \geq 1 \\ l_{1}+l_{2}=i}}^{i, l_{2} \geq 1} \mid ~ A \varepsilon_{(i, j, k),\left(l_{1}, l_{2}\right), l} A
$$

Hochschild cohomology ring modulo nilpotence

$$
\begin{aligned}
& \xi_{(i, j, k)}: \varepsilon_{(i, j, k),\left(l_{1}, l_{2}\right), 1} \mapsto \begin{cases}\varepsilon_{(i, j, k-1),\left(l_{1}, l_{2}\right), 1} X_{2}^{2} & \text { if } k \text { is odd } \\
\varepsilon_{(i, j, k-1),\left(l_{1}, l_{2}\right), 1} X_{3}^{2} & \text { if } k \text { is even. }\end{cases} \\
& \varepsilon_{(i, j, k),\left(l_{1}, l_{2}\right), 2} \mapsto \begin{cases}X_{2}^{2} \varepsilon_{(i, j, k-1),\left(l_{1}, l_{2}\right), 2} & \text { if } k \text { is odd } \\
X_{3}^{2} \varepsilon_{(i, j, k-1),\left(l_{1}, l_{2}\right), 2} & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

Then the Hochschild cohomology ring of A modulo nilpotence is the polynomial ring.

$$
\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N} \simeq K\left[x_{1}\right] \text { where } x_{1}=e_{(1,1)}+e_{(1,2)} \in \operatorname{HH}^{2}(\boldsymbol{A})
$$

Example 4: Quiver algebra with 3 cycles and quantum-like relations 3

Let Q be the quiver as follows:

$$
e_{(1,2)}^{\stackrel{a_{(3,2)}}{\substack{a_{(3,1)} \\ a_{(1,1)}}} e_{(1,1)}^{\leftrightarrows} \xrightarrow[a_{(2,2)}]{\leftrightarrows}} e_{(2,2)}^{\leftrightarrows}
$$

I : the ideal of $K Q$ generated by

$$
\begin{aligned}
& X_{i}^{2 n_{i}} \text { for } 1 \leq i \leq 3, \quad X_{i}^{2} X_{j}^{2}-X_{j}^{2} X_{i}^{2} \text { for } 1 \leq i, j \leq 3 \\
& a_{(1,2)} X_{2}^{2 l_{1}} a_{(3,1)}, a_{(3,2)} X_{2}^{2 l_{2}} a_{(1,1)} \text { for } 0 \leq l_{1}, l_{2} \leq n_{2}-1
\end{aligned}
$$

where $X_{i}:=a_{(i, 1)}+a_{(i, 2)}, n_{i}$ are integers with $n_{i} \geq 2$ for $1 \leq i \leq 3$. We consider the quiver algebra $A=K Q / I$. The Hochschild cohomology ring of A modulo nilpotence is the polynomial ring.

$$
\mathrm{HH}^{*}(\boldsymbol{A}) / \mathcal{N} \simeq K\left[x_{2}\right] \text { where } x_{2}=e_{(1,1)}+e_{(2,2)} \in \mathrm{HH}^{2}(\boldsymbol{A}) .
$$

