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Introduction
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Notation

K: field, charK = 0,

A: finite dimensional K-algebra,

Ae:= A⊗K Aop: enveloping algebra,

HHn(A) ≃ ExtnAe(A,A): n-th Hochschild cohomology group of A,

HH∗(A) ≃ ⊕n≥0HHn(A): Hochschild cohomology ring of A with

Yoneda product,

N : ideal of HH∗(A) generated by all homogeneous nilpotent

elements.

HH∗(A)/N : Hochschild cohomology ring of A modulo nilpotence.
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Hochschild cohomology group

.
Hochschild cohomology group
..

......

Let P be the projective A-bimodule resolution of A. Applying

HomAe(−, A) to P, we have the following complex HomAe(P, A):

HomAe(P0, A)→ HomAe(P1, A)→ HomAe(P2, A)→ · · · .

Then, the n-th Hochschild cohomology group is given by n-th cohomology

of HomAe(P, A).

HHn(A) ≃ ExtnAe(A,A) = KerHomAe(Pn+1, A)/ImHomAe(Pn, A).
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The support variety of an A-module M

M : A-module.

ϕM : HH∗(A)
−⊗AM−→ Ext∗A(M,M) is a homomorphism of graded

rings for an A-module M .

Ext∗A(M,M) is an HH∗(A)-module.

.
Definition [[Snashall,Solberg (2004)], Definision 3.3]
..

......

The support variety of M is given by

V (M) = {m ∈ MaxSpec HH∗(A)/N|AnnExt∗A(M,M) ⊆ m′}

where AnnExt∗A(M,M) is the annihilator of Ext∗A(M,M) and m′ is the

preimage in HH∗(A) of the ideal m in HH∗(A)/N .
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Properties of support varieties

Snashall and Solberg showed the following properties.

.
Theorem [SnSo(2004)]
..

......

...1 V (M1 ⊕M2) = V (M1) ∪ V (M2),

...2 If 0→M1 →M2 →M3 → 0 is an exact sequence, then

V (Mi1) ⊆ V (Mi2) ∪ V (Mi3) whenever {i1, i2, i3} = {1, 2, 3},
...3 If ExtiA(M,M) = (0) for i≫ 0 or the projective or the injective

dimension of M is finite, then V (M) is trivial.
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.
Question [Snashall(2009)]
..

......

Whether we can give necessary and sufficient conditions on a finite

dimensional algebra A for HH∗(A)/N to be finitely generated as an

algebra?

With respect to sufficient conditions, it is shown that HH∗(A)/N is

finitely generated as an algebra for various classes of algebras by many

authors as follows:

Any block of a group ring of a finite group (See [Evens(1961)],

[Venkov(1959)])

Finite dimensional algebras of finite global dimension (See

[Happel(1989)])

Finite dimensional self-injective algebras of finite representation type

over an algebraically closed field (See [Green, Snashall,

Solberg(2003)])

Finite dimensional monomial algebras (See [Green, Snashall,

Solberg(2006)])

A class of special biserial algebras (See [Snashall, Taillefer(2010)])
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Counter example of Snashall-Solberg conjecture [Xu(2008)],

[Snashall(2009)]

Let A = kQ/I where Q is the quiver

1

a

��

b

EE
c // 2

and I = ⟨a2, b2, ab− ba, ac⟩. Snashall showed the following Theorem.

.
[Sn(2009), Theorem 4.5]
..

......

...1 HH∗(A)/N ∼=

{
k ⊕ k[a, b]b if chark = 2,

k ⊕ k[a2, b2]b2 if chark ̸= 2.

...2 HH∗(A)/N is not finitely generated as an algebra.
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Quiver algebra with quantum-like relation
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c-th quantum complete intersection [Oppermann(2010)]

Let c and ni be integers with c ≥ 2 and ni ≥ 2 for 1 ≤ i ≤ c. Let I be

an ideal in K⟨x1, . . . , xc⟩ generated by

xni

i for 1 ≤ i ≤ c, xjxi − qi,jxixj for 1 ≤ i < j ≤ c,

where qi,j is non-zero element in K for 1 ≤ i < j ≤ c.

A = K⟨x1, . . . , xn⟩/I is a quantum complete intersection. Then we have

HH∗(A)/N as follows.
.
Theorem [Oppermann(2010) Theorem 5.5]
..

......

HH∗(A)/N is isomorphic to the following finitely generated K-algebra.

HH∗(A)/N ∼= K⟨yp1n1/2
1 · · · ypcnc/2

c ∈ K[y1, . . . , yc]|∏c
j=1 q

pjnj/2
i,j = 1 for all i with pi even,∏c

j=1 q
(pj−1)nj/2+1
i,j = −1 and ni = 2 for all i with pi odd⟩.

where qi,i = 1 and qi,j = q−1
j,i for 1 ≤ j < i ≤ c.

Then HH∗(A)/N is finitely generated as an algebra.
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Projective resolution of a quantum complete intersection

We consider the case of c = 2 and q1,2 = 1.

Let Ai = K[xi]/(x
ni

i ) for 1 ≤ i ≤ 2. Then the projective bimodule

resolution of Ai is

Pi : A
e
i

d(i,1)←− Ae
i

d(i,2)←− Ae
i

d(i,3)←− Ae
i

d(i,4)←− · · · ,

where

d(i,j) :1⊗ 1 7→ 1⊗ xi − xi ⊗ 1 if j is odd,

1⊗ 1 7→
ni−1∑
k=0

xk
i ⊗ xni−1−k

i if j is even.

Then the projective bimodule resolution of the quantum complete

intersection A is the total complex of the following commutative diagram.
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Projective resolution of a quantum complete intersection

...

��

...

��

...

��
Ae

d(2,2)

��

Ae
d(1,1)oo

−d(2,2)

��

Ae
d(1,2)oo

d(2,2)

��

· · ·oo

Ae

d(2,1)

��

Ae
d(1,1)oo

−d(2,1)

��

Ae
d(1,2)oo

d(2,1)

��

· · ·oo

Ae

}}||
||

||
||

Ae
d(1,1)

oo Ae
d(1,2)

oo · · ·oo

A

where A-homomorphisms d(1,j) correspond to the projective resolution P1,

and A-homomorphisms d(2,j) correspond to the projective resolution P2.
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Quiver algebra defined by 2 cycles and a quantum-like relation

[Obara(2012)]

Let s1, s2 ≥ 2 be integers. We consider the quiver algebra A = kQ/I.

Q: the quiver with s + t− 1 vertices and s + t arrows as follows:

e(1,3)
α(1,3)

}}{{
{{

{{
{{

{
e(1,2)

α(1,2)oo e(2,2)
α(2,2) // e(2,3)

α(2,3)

!!CC
CC

CC
CC

C

e1

α(1,1)

ccGGGGGGGGG

α(2,1)

;;wwwwwwwww

α(1,s1−1)
// e(1,s1)

α(1,s1)

;;wwwwwwwww
e(2,s2)

α(2,s2)

ccGGGGGGGGG

α(2,s2−1)
oo

I: the ideal of kQ generated by

Xs1n1
1 , Xs1

1 Xs2
2 − q1,2X

s2
2 Xs1

1 , Xs2n2
2

where Xi:= α(i,1) + α(i,2) + · · ·+ α(i,s1), integers ni ≥ 2 for 1 ≤ i ≤ 2

and q1,2 is non-zero element in K.
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Quiver algebra defined by 2 cycles and a quantum-like relation

[Obara(2012)]

For simplicity, we consider the case of s1 = s2 = 2 and q1,2 = 1. Then

A = kQ/I.

Q: the quiver with 3 vertices and 4 arrows as follows:

e(1,2)

a(1,2)

** e1
a(1,1)

ll

a(2,1),,
e(2,2)

a(2,2)

jj

I: the ideal of kQ generated by

X2n1
1 , X2

1X
2
2 −X2

2X
2
1 , X

2n2
2

where Xi:= a(i,1) + a(i,2) and integers ni ≥ 2 for 1 ≤ i ≤ 2.
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Projective resolution of an algebra defined by 2 cycles and a

quantum-like relation

The complex

P0

d(1,0)←− Q(1,0)

d(2,0)←− Q(2,0)

d(3,0)←− Q(3,0)

d(4,0)←− · · · ←−

correspond to the projective resolution of Nakayama algebra KQ1/⟨X2n1
1 ⟩

and

P0

d(0,1)←− Q(0,1)

d(0,2)←− Q(0,2)

d(0,3)←− Q(0,3)

d(0,4)←− · · · ←−

correspond to the projective resolutions of Nakayama KQ2/⟨X2n2
2 ⟩ where

Q1 : e(1,2)

a(1,2)

** e1
a(1,1)

ll and Q2 : e1

a(2,1),,
e(2,2)

a(2,2)

jj and Xi:= a(i,1) + a(i,2).
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...

��

...

��

...

��
Q(0,2)

d(0,2)

��

Ae1 ⊗ e1A
δ(1,2)oo

−σ(1,2)

��

Ae1 ⊗ e1A
δ(2,2)oo

σ(2,2)

��

· · ·oo

Q(0,1)

d(0,1)

��

Ae1 ⊗ e1A
δ(1,1)oo

−σ(1,1)

��

Ae1 ⊗ e1A
δ(2,1)oo

σ(2,1)

��

· · ·oo

P0 Q(1,0)

d(1,0)oo Q(2,0)

d(2,0)oo · · ·oo

δ correspond to the projective bimodule resolution of Nakayama algebra

defined by 1 loop K[e1X
2
1e1]/⟨e1X

2n1
1 e1⟩.

σ correspond to the projective bimodule resolution of Nakayama algebra

defined by 1 loop K[e1X
2
2e1]/⟨e1X

2n2
2 e1⟩.

We have the projective bimodule resolution of this algebra as total

complex of this commutative diagram.
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Projective resolution of an algebra defined by 2 cycles and a

quantum-like relation

In fact, we have the Ae-homomorphisms δ and σ as follows.

δ(l1,l2) : e1 ⊗ e1 7→


e1 ⊗ e1X

2
1 −X2

1e1 ⊗ e1 if l1 is odd,
n1−1∑
k=0

X2k
1 e1 ⊗ e1X

2(n1−1−k)
1 if l1 is even,

σ(l1,l2) : e1 ⊗ e1 7→


e1 ⊗ e1X

2
2 −X2

2e1 ⊗ e1 if l2 is odd,
n1−1∑
k=0

X2k
2 e1 ⊗ e1X

2(n2−1−k)
2 if l2 is even.
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Hohschild cohomology ring modulo nilpotence

In [Obara(2015)], we determine the Hochoschild cohomology ring modulo

nilpotence of a quiver algebra defined by two cycles and a quantum-like

relation.
.
Theorem [Obara(2015)]
..

......

If q1,2 is a root of unity, then HH∗(A)/N is isomorphic to the polynomial

ring of two variables.

If q1,2 is not a root of unity, HH∗(A)/N ∼= K.

In fact, in the case of s1 = s2 = 2 and q1,2 = 1, we have the Hochschild

cohomology ring of A modulo nilpotence as follows:

HH∗(A)/N = k[x, y]

where x = e1 + e(1,2), y = e1 + e(2,2) ∈ HH2(A).
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Conjecture

Now, we have the following conjecture.

.
Conjecture
..

......

The projective bimodule resolution of the finite dimensional algebra with

quantum-like relations is given by a total complex of projective bimodule

resolutions depending on each relation.

With respect to this conjecture, we have the projective bimodule

resolutions of the following algebras.
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Example 1: Quiver algebra defined by 3 cycles and

quantum-like relations 1

Let Q be the quiver as follows:

e(3,2)

a(3,2)

		
e(1,2)

a(1,2)

44 e1

a(2,1) ,,
a(1,1)rr

a(3,1)

HH

e(2,2)
a(2,2)

jj

I: the ideal of KQ generated by

X2ni

i for 1 ≤ i ≤ 3, X2
i X

2
j −X2

j X
2
i for 1 ≤ i < j ≤ 3.

where Xi:= a(i,1) + a(i,2), ni are integers with ni ≥ 2 for 1 ≤ i ≤ 3.

We consider the quiver algebra A = KQ/I.
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Projective resolution

We have the projective bimodule resolution of this algebra as total

complex of the following commutative diagram. The complex

P0

d(1,0)←− Q(1,0)

d(2,0)←− Q(2,0)

d(3,0)←− Q(3,0)

d(4,0)←− · · · ←−

correspond to the projective resolutions of the quiver algebra

KQ1/⟨X2n1
1 , X2n2

2 , X2
1X

2
2 −X2

2X
2
1⟩ and

P0

d(0,1)←− Q(0,1)

d(0,2)←− Q(0,2)

d(0,3)←− Q(0,3)

d(0,4)←− · · · ←−

correspond to the projective resolutions of Nakayama algebra

KQ2/⟨X2n3
3 ⟩

whereQ1 : e(1,2)

a(1,2)

** e1
a(1,1)

ll

a(2,1),,
e(2,2)

a(2,2)

jj and Q2 : e1

a(3,1),,
e(3,2)

a(3,2)

jj where

Xi:= a(i,1) + a(i,2).
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...

��

...

��

...

��
Q(0,2)

d(0,2)

��

Q(1,2)

δ(1,2)oo

−σ(1,2)

��

Q(2,2)

δ(2,2)oo

σ(2,2)

��

· · ·oo

Q(0,1)

d(0,1)

��

Q(1,1)

δ(1,1)oo

−σ(1,1)

��

Q(2,1)

δ(2,1)oo

σ(2,1)

��

· · ·oo

P0 Q(1,0)

d(1,0)oo Q(2,0)

d(2,0)oo · · ·oo

δ is the projective bimodule resolution depending on the relations X2n1
1 ,

X2n2
2 , X2

1X
2
2 −X2

2X
2
1 and σ is the projective bimodule resolution

depending on the relation X2n3
3 as follows.

Let ε(i,j),(l1,l2) = e1 ⊗ e1 for i, j ≥ 1 and l1, l2 ≥ 0 such that l1 + l2 = i.

Q(i,j) =
⨿

i, j ≥ 1

l1, l2 ≥ 0

l1 + l2 = i

Aε(i,j),(l1,l2)A.
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Projective resolution

δ(i,j) : ε(i,j),(l1,l2) 7→

ε(i−1,j),(l1−1,l2)X
2
1 −X2

1ε(i−1,j),(l1−1,l2)

+ ε(i−1,j),(l1,l2−1)X
2
2 −X2

2ε(i−1,j),(l1,l2−1) if l1, l2 are odd,
n1−1∑
k=0

X2k
1 ε(i−1,j),(l1−1,l2)X

2(n1−1−k)
1

+

n2−1∑
k′=0

X2k′

2 ε(i−1,j),(l1,l2−1)X
2(n2−1−k′)
2 if l1, l2 are even,

ε(i−1,j),(l1−1,l2)X
2
1 −X2

1ε(i−1,j),(l1−1,l2)

+

n2−1∑
k′=0

X2k′

2 ε(i−1,j),(l1,l2−1)X
2(n2−1−k′)
2 if l1 is odd and l2 are even,

n1−1∑
k=0

X2k
1 ε(i−1,j),(l1−1,l2)X

2(n1−1−k)
1

+ ε(i−1,j),(l1,l2−1)X
2
2 −X2

2ε(i−1,j),(l1,l2−1) if l1 is even and l2 is odd,
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Hochschild cohomology ring modulo nilpotence

σ(i,j) : ε(i,j),(l1,l2) 7→


ε(i,j−1),(l1,l2)X

2
3 −X2

3ε(i,j),(l1,l2) if j is odd,
n1−1∑
k=0

X2k
3 ε(i,j−1),(l1,l2)X

2(n3−1−k)
3 if j is even.

Then the Hochschild cohomology ring of A modulo nilpotence is the

polynomial ring of 3 variables.

HH∗(A)/N ≃ K[x1, x2, x3] where xi = e1 + e(i,2) ∈ HH2(A).

Moreover, in general, we have the following result.

.
Theorem [Obara]
..

......

The Hochschild cohomology ring modulo nilpotence of a quiver algebra

defined by c cycles and quantum-like relations correspond with that of c-th

quantum complete intersection.
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In fact, we have the K-basis elements of HH∗(A)/N as follows, and these

elements form a K-basis of HH∗(A)/N .

...1 If n is even, and i with 1 ≤ i ≤ c satisfy the following conditions,

then
∑si

ki=1 e
n
(i,ki)

∈ HHn(A) is K-basis element of HH∗(A)/N .

q
nin/2
i,j = 1 for 1 ≤ j ≤ c such that j > i,

q
nin/2
j,i = 1 for 1 ≤ j ≤ c such that j < i.

...2 If n1, . . . , nc and (l1, . . . , lc) ∈ Ln satisfy the following conditions,

then en(l1,...,lc) ∈ HHn(A) is K-basis element of HH∗(A)/N .

li is even or li is odd and ni = 2 for 1 ≤ i ≤ c,

c−j∏
h1=1

q
nj+h1

lj+h1
/2

j,j+h1

j−1∏
h2=1

q
−nh2 lh2/2

h2,j
= 1 for 1 ≤ j ≤ c s.t. lj: even(̸= 0),

c−j∏
h1=1

q
nj+h1

lj+h1
/2

j,j+h1

j−1∏
h2=1

q
−nh2 lh2/2

h2,j
= −1 for 1 ≤ j ≤ c s.t. lj is odd,
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And applying the functor HomAe(Ae1 ⊗ e1A,−) to the projective

bimodule resolution of A, we have the projective bimodule resolution of a

quantum complete intersection e1Ae1. Then we have the K-basis

elements of HH∗(e1Ae1)/N as follows, and these elements form a

K-basis of HH∗(e1Ae1)/N .

...1 If n is even, and i with 1 ≤ i ≤ c satisfy the following conditions,

then e1 +
∑si

ki=2(e1Xie1)ki ∈ HHn(e1Ae1) is K-basis element of

HH∗(e1Ae1)/N .

q
nin/2
i,j = 1 for 1 ≤ j ≤ c such that j > i,

q
nin/2
j,i = 1 for 1 ≤ j ≤ c such that j < i.

...2 en(l1,...,lc) ∈ HHn(e1Ae1) is K-basis element of HH∗(e1Ae1)/N in

the same condition in above page.
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Example 2: Quiver algebra with 3 cycles and quantum-like

relations

Let Q be the quiver as follows:

e(1,2)
a(1,2)

22 e(1,1)

a(2,1) ,,
a(1,1)rr

e(2,2)
a(2,2)

ll

a(3,1) ,,
e(3,2)

a(3,2)

ll

I: the ideal of KQ generated by

X2ni

i for 1 ≤ i ≤ 3, X2
i X

2
2 −X2

2X
2
i for i = 1, 3,

a(1,2)a(2,1)X
2l1
2 a(3,1), a(3,2)a(2,2)X

2l2
2 a(1,1) for 0 ≤ l1, l2 ≤ n2 − 1.

where Xi:= a(i,1) + a(i,2), ni are integers with ni ≥ 2 for 1 ≤ i ≤ 3.

We consider the quiver algebra A = KQ/I.
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Projective resolution

We have the projective bimodule resolution of this algebra as total

complex of the following commutative diagram. The complex

P0

d(1,0)←− Q(1,0)

d(2,0)←− Q(2,0)

d(3,0)←− Q(3,0)

d(4,0)←− · · · ←−

correspond to the projective resolution of the quiver algebra

KQ1/⟨X2n1
1 , X2n2

2 , X2
1X

2
2 −X2

2X
2
1⟩ and

P0

d(0,1)←− Q(0,1)

d(0,2)←− Q(0,2)

d(0,3)←− Q(0,3)

d(0,4)←− · · · ←−

correspond to the projective resolution of Nakayama algebra KQ2/⟨X2n3
3 ⟩

where Q1 : e(1,2)

a(1,2) ,,
e(1,1)

a(1,1)

ll

a(2,1) ,,
e(2,2)

a(2,2)

ll and Q2 : e(2,2)

a(3,1) ,,
e(3,2)

a(3,2)

ll

where Xi:= a(i,1) + a(i,2).
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...

��

...

��

...

��
Q(0,2)

d(0,2)

��

Q(1,2)

δ(1,2)oo

−σ(1,2)

��

Q(2,2)

δ(2,2)oo

σ(2,2)

��

· · ·oo

Q(0,1)

d(0,1)

��

Q(1,1)

δ(1,1)oo

−σ(1,1)

��

Q(2,1)

δ(2,1)oo

σ(2,1)

��

· · ·oo

P0 Q(1,0)

d(1,0)oo Q(2,0)

d(2,0)oo · · ·oo

δ is the projective bimodule resolution depending on the relations X2n1
1 ,

X2n2
2 , X2

1X
2
2 −X2

2X
2
1 and σ is the projective bimodule resolution

depending on the relation X2n3
3 as follows.
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...

��

...

��

zz

...

�� ||
...

��

Q(1,2,1)

−σ′
(1,2,1)

zztttttttttt

ξ(1,2,1)

��

Q(2,2,1)

σ′
(2,2,1)

zztttttttttt

δ′
(2,2,1)oo

ξ(2,2,1)

��

· · ·oo

Q(1,1,1)

ξ(1,1,1)

��

Q(2,1,1)

δ′
(2,1,1)oo

ξ(2,1,1)

��

yy

· · ·oo

{{
Q(1,2)

−σ(1,2)

yyssssssssss
Q(2,2)

δ(2,2)oo

σ(2,2)

yyssssssssss
· · ·oo

Q(1,1) Q(2,1)

δ(2,1)oo · · ·oo

ξ(i,j,k) is the projective bimodule resolution depending on the relations

a(1,2)a(2,1)X
2l1
2 a(3,1) and a(3,2)a(2,2)X

2l2
2 a(1,1) as follows. And δ′ and σ′

are similar to δ and σ.
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For i, j ≥ 1, we define the projective A-bimodule Q(i,j) as follows:

Q(i,j) = Aε(i,j),⟨(2,2),(2,2)⟩A⊕
⨿

l1, l2 ≥ 1

l1 + l2 = i

Aε(i,j),⟨(1,1),(2,2)⟩,(l1,l2)A

⊕
⨿

l1, l2 ≥ 1

l1 + l2 = i

Aε(i,j),⟨(2,2),(1,1)⟩,(l1,l2)A

⊕



Aε(i,j),⟨(1,1),(2,2)⟩,(i,0)A⊕Aε(i,j),⟨(2,2),(1,1)⟩,(i,0)A

if i, j are even,

Aε(i,j),⟨(1,2),(3,2)⟩,(i,0)A⊕Aε(i,j),⟨(3,2),(1,2)⟩,(i,0)A

if i, j are odd,

Aε(i,j),⟨(1,2),(2,2)⟩,(i,0)A⊕Aε(i,j),⟨(2,2),(1,2)⟩,(i,0)A

if i is odd and j is even,

Aε(i,j),⟨(1,1),(3,2)⟩,(i,0)A⊕Aε(i,j),⟨(3,2),(1,1)⟩,(i,0)A

if i is even and j is odd.

where ε(i,j),⟨(t1,t2),(t3,t4)⟩,(l1,l2) = e(t1,t2) ⊗ e(t3,t4) and

ε(i,j),⟨(2,2),(2,2)⟩ = e(2,2) ⊗ e(2,2).
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δ(i,j) : ε(i,j),{(2,2),(2,2)} 7→
ε(i−1,j),⟨(2,2),(2,2)⟨X

2
2 −X2

2ε(i−1,j),⟨(2,2),(2,2)⟩ if i is odd,
n2−1∑
k=0

X2k
2 ε(i−1,j),⟨(2,2),(2,2)⟩X

2(n2−1−k)
2 if i is even,

ε(i,j),⟨(1,1),(2,2)⟩,(l1,l2) 7→

ε(i−1,j),⟨(1,1),(2,2)⟩,(l1,l2−1)X
2
2 −X2

2ε(i−1,j),⟨(1,1),(2,2)⟩,(l1,l2−1)

−X2
1ε(i−1,j),⟨(1,1),(2,2)⟩,(l1−1,l2) if l1, l2 are odd,

n2−1∑
k=0

X2k
2 ε(i−1,j),⟨(1,1),(2,2)⟩,(l1,l2−1)X

2(n2−1−k)
2

+ X
2(n1−1)
1 ε(i−1,j),⟨(1,1),(2,2)⟩,(l1−1,l2) if l1, l2 are even,

ε(i−1,j),⟨(1,1),(2,2)⟩,(l1,l2−1)X
2
2 −X2

2ε(i−1,j),⟨(1,1),(2,2)⟩,(l1,l2−1)

−X
2(n1−1)
1 ε(i−1,j),⟨(1,1),(2,2)⟩,(l1−1,l2) if l1 is even and l2 is odd,

n2−1∑
k=0

X2k
2 ε(i−1,j),⟨(1,1),(2,2)⟩,(l1,l2−1)X

2(n2−1−k)
2

+ X2
1ε(i−1,j),⟨(1,1),(2,2)⟨,(l1−1,l2) if l1 is odd and l2 is even.
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Projective resolution

ε(i,j),⟨(2,2),(1,1)⟩,(l1,l2) 7→

ε(i−1,j),⟨(2,2),(1,1)⟩,(l1,l2−1)X
2
2 −X2

2ε(i−1,j),⟨(2,2),(1,1)⟩,(l1,l2−1)

− ε(i−1,j),⟨(2,2),(1,1)⟩,(l1−1,l2)X
2
1 if l1, l2 are odd,

n2−1∑
k=0

X2k
2 ε(i−1,j),⟨(2,2),(1,1)⟩,(l1,l2−1)X

2(n2−1−k)
2

+ ε(i−1,j),⟨(2,2),(1,1)⟩,(l1−1,l2)X
2(n1−1)
1 if l1, l2 are even,

ε(i−1,j),⟨(2,2),(1,1)⟩,(l1,l2−1)X
2
2 −X2

2ε(i−1,j),⟨(2,2),(1,1)⟩,(l1,l2−1)

− ε(i−1,j),⟨(2,2),(1,1)⟩,(l1−1,l2)X
2(n1−1)
1 if l1 is even and l2 is odd,

n2−1∑
k=0

X2k
2 ε(i−1,j),⟨(2,2),(1,1)⟩,(l1,l2−1)X

2(n2−1−k)
2

+ ε(i−1,j),⟨(2,2),(1,1)⟩,(l1−1,l2)X
2
1 if l1 is odd and l2 is even.
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Projective resolution

σ(i,j) : ε(i,j),⟨(2,2),(2,2)⟩ 7→
ε(i,j−1),⟨(2,2),(2,2)⟩X

2
3 −X2

3ε(i,j),⟨(2,2),(2,2)⟩ if j is odd,
n3−1∑
k=0

X2k
3 ε(i,j−1),⟨(2,2),(2,2)⟩X

2(n3−1−k)
3 if j is even.

ε(i,j),⟨(1,1),(2,2)⟩,(l1,l2) 7→{
ε(i,j−1),⟨(1,1),(2,2)⟩,(l1,l2)X

2
3 if j is odd,

ε(i,j−1),⟨(1,1),(2,2)⟩,(l1,l2)X
2(n3−1)
3 if j is even.

ε(i,j),⟨(2,2),(1,1)⟩,(l1,l2) 7→{
X2

3ε(i,j−1),⟨(2,2),(1,1)⟩,(l1,l2) if j is odd,

X
2(n3−1)
3 ε(i,j−1),⟨(2,2),(1,1)⟩,(l1,l2) if j is even.
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In the case of k is odd,

Q(i,j,k) =
⨿

l1 + l2 = i

l1 ≥ 2, l2 ≥ 1

⨿
l3 + l4 = k

l1, l2 ≥ 0

(Aε(i,j,k),⟨(1,1),(1,1)⟩,(l1,l2),(l3,l4)A

⊕Aε(i,j,k),⟨(2,2),(2,2)⟩,(l1,l2),(l3,l4)A)

⊕
⨿

l3 + l4 = k + 1

l3, l4 are odd

Aε(i,j,k),⟨(1,1),(1,1)⟩,(1,i−1),(l3,l4)A

⊕
⨿

l3 + l4 = k + 1

l3, l4 are even

Aε(i,j,k),⟨(2,2),(2,2)⟩,(1,i−1),(l3,l4)A

⊕



⨿
l3 + l4 = k

l1, l2 ≥ 0

(Aε(i,j,k),⟨(1,1),(1,1)⟩,(i,0),(l3,l4)A

⊕Aε(i,j,k),⟨(2,2),(2,2)⟩,(i,0),(l3,l4)A) if i, j are even,

Aε(i,j,k),⟨(2,2),(3,2)⟩,(i,0)A⊕Aε(i,j,k),⟨(3,2),(2,2)⟩,(i,0)A

if i is even and j is odd,

Aε(i,j,k),⟨(1,1),(1,2)⟩,(i,0)A⊕Aε(i,j,k),⟨(1,2),(1,1)⟩,(i,0)A

if i is odd and j is even,
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In the case of k is even,

Q(i,j,k) =
⨿

l1 + l2 = i

l1 ≥ 2, l2 ≥ 1

⨿
l3 + l4 = k

l1, l2 ≥ 0

(Aε(i,j,k),⟨(1,1),(2,2)⟩,(l1,l2),(l3,l4)A

⊕Aε(i,j,k),⟨(2,2),(1,1)⟩,(l1,l2),(l3,l4)A)

⊕
⨿

l3 + l4 = k + 1

l3 :even, l4 :odd

Aε(i,j,k),⟨(1,1),(2,2)⟩,(1,i−1),(l3,l4)A

⊕
⨿

l3 + l4 = k + 1

l3 :odd, l4 :even

Aε(i,j,k),⟨(2,2),(1,1)⟩,(1,i−1),(l3,l4)A

⊕



⨿
l3 + l4 = k

l1, l2 ≥ 0

(Aε(i,j,k),⟨(1,1),(2,2)⟩,(i,0),(l3,l4)A

⊕Aε(i,j,k),⟨(2,2),(1,1)⟩,(i,0),(l3,l4)A) if i, j are even,

Aε(i,j,k),⟨(1,1),(3,2)⟩,(i,0)A⊕Aε(i,j,k),⟨(3,2),(1,1)⟩,(i,0)A

if i is even and j is odd,

Aε(i,j,k),⟨(2,2),(1,2)⟩,(i,0)A⊕Aε(i,j,k),⟨(1,2),(2,2)⟩,(i,0)A

if i is odd and j is even,
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We have the Ae-homomorphism ξ as follows:

ξ(i,j,k) :



ε(i,j,k),⟨(1,1),(2,2)⟩,(l1,l2),(l′1,l′2) 7→
ε(i,j,k−1),⟨(1,1),(1,1)⟩,(l1,l2),(l′1−1,l′2)

a(2,1)X
2
3

−X2
1a(2,1)ε(i,j,k−1),⟨(2,2),(2,2)⟩,(l1,l2),(l′1,l′2−1),

ε(i,j,k),⟨(2,2),(1,1)⟩,(l1,l2),(l′1,l′2) 7→
ε(i,j,k−1),⟨(2,2),(2,2)⟩,(l1,l2),(l′1−1,l′2)

a(2,2)X
2
1

−X2
3a(2,2)ε(i,j,k−1),⟨(1,1),(1,1)⟩,(l1,l2),(l′1,l′2−1),

if k is even,

ξ(i,j,k) :



ε(i,j,k),⟨(1,1),(1,1)⟩,(l1,l2),(l′1,l′2) 7→
ε(i,j,k−1),⟨(1,1),(2,2)⟩,(l1,l2),(l′1−1,l′2)

a(2,2)X
2
1

−X2
1a(2,1)ε(i,j,k−1),⟨(2,2),(1,1)⟩,(l1,l2),(l′1,l′2−1),

ε(i,j,k),⟨(2,2),(2,2)⟩,(l1,l2),(l′1,l′2) 7→
ε(i,j,k−1),⟨(2,2),(1,1)⟩,(l1,l2),(l′1−1,l′2)

a(2,1)X
2
3

−X2
3a(2,2)ε(i,j,k−1),⟨(1,1),(2,2)⟩,(l1,l2),(l′1,l′2−1),

if k is odd.
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Projective resolution

We denote the total complex of above complexes by

P : 0← A
π←− P0

d1←− P1 ← · · ·
dn←− Pn ← · · · .

We consider the complex P⊗A A/radA. Then we have the following

rusult.
.
Proposition
..
......The complex P⊗A A/radA is exact.

Therefore P is a projective bimodule resolution of A by [Theorem 2.8

Green,Snashall(2004)].

Then the Hochschild cohomology ring of A modulo nilpotence is the

polynomial ring.

HH∗(A)/N ≃ K[x2] where x2 = e(1,1) + e(2,2) ∈ HH2(A).
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.
Remark
..

......

The Hochschild cohomology ring modulo nilpotence of A corresponds to

that of B where B = KQ/I is the quiver algebra defined by the following

quiver Q and ideal I.

Q : e1a(1,1) 77

a(2,1)

))
e2

a(2,2)

ii a(3,1)gg

I : the ideal of KQ generated by

a2
(1,1), (a(2,1) + a(2,2))

4, a2
(3,1),

a(1,1)(a2,1a2,2)− (a2,1a2,2)a(1,1), (a2,2a2,1)a(3,1) − a(3,1)(a2,2a2,1),

a(1,1)a(2,1)a(3,1), a(3,1)a(2,2)a(1,1).
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Example 3: Quiver algebra with 3 cycles and quantum-like

relations 2

Let Q be the quiver as follows:

e(3,2)

a(3,2)

		
e(1,2)

a(1,2)

22 e(1,1)

a(2,1) ,,
a(1,1)rr

a(3,1)

HH

e(2,2)
a(2,2)

ll

I: the ideal of KQ generated by

X2ni

i for 1 ≤ i ≤ 3, X2
1X

2
j −X2

j X
2
1 for 2 ≤ j ≤ 3,

a(2,2)a(3,1), a(3,2)a(2,1).

where Xi:= a(i,1) + a(i,2), ni are integers with ni ≥ 2 for 1 ≤ i ≤ 3.

We consider the quiver algebra A = KQ/I. Then, we have the projective

bimodule resolution of this algebra as total complex of the following

commutative diagram.
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...

��

...

��

zz

...

�� ||
...

��

Q(1,2,1)

σ′
(1,2,1)

zztttttttttt

ξ(1,2,1)

��

Q(2,2,1)

σ′
(2,2,1)

zztttttttttt

δ′
(2,2,1)oo

ξ(2,2,1)

��

· · ·oo

Q(1,1,1)

ξ(1,1,1)

��

Q(2,1,1)

δ′
(2,1,1)oo

ξ(2,1,1)

��

yy

· · ·oo

{{
Q(1,2)

σ(1,2)

yyssssssssss
Q(2,2)

δ(2,2)oo

σ(2,2)

yyssssssssss
· · ·oo

Q(1,1) Q(2,1)

δ(2,1)oo · · ·oo

ξ(i,j,k) is the projective resolution depending on the relations a(2,2)a(3,1)

and a(3,2)a(2,1) as follows. And δ′ and σ′ are similar to δ and σ.

Q(i,j,k) =
⨿2

l=1

⨿
i, j ≥ 1

l1 ≥ 0, l2 ≥ 1

l1 + l2 = i

Aε(i,j,k),(l1,l2),lA
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Hochschild cohomology ring modulo nilpotence

ξ(i,j,k) :ε(i,j,k),(l1,l2),1 7→
{
ε(i,j,k−1),(l1,l2),1X

2
2 if k is odd,

ε(i,j,k−1),(l1,l2),1X
2
3 if k is even.

ε(i,j,k),(l1,l2),2 7→
{
X2

2ε(i,j,k−1),(l1,l2),2 if k is odd,

X2
3ε(i,j,k−1),(l1,l2),2 if k is even.

Then the Hochschild cohomology ring of A modulo nilpotence is the

polynomial ring.

HH∗(A)/N ≃ K[x1] where x1 = e(1,1) + e(1,2) ∈ HH2(A).
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Example 4: Quiver algebra with 3 cycles and quantum-like

relations 3

Let Q be the quiver as follows:

e(3,2)

a(3,2)

		
e(1,2)

a(1,2)

22 e(1,1)

a(2,1) ,,
a(1,1)rr

a(3,1)

HH

e(2,2)
a(2,2)

ll

I: the ideal of KQ generated by

X2ni

i for 1 ≤ i ≤ 3, X2
i X

2
j −X2

j X
2
i for 1 ≤ i, j ≤ 3,

a(1,2)X
2l1
2 a(3,1), a(3,2)X

2l2
2 a(1,1) for 0 ≤ l1, l2 ≤ n2 − 1.

where Xi:= a(i,1) + a(i,2), ni are integers with ni ≥ 2 for 1 ≤ i ≤ 3. We

consider the quiver algebra A = KQ/I.

The Hochschild cohomology ring of A modulo nilpotence is the polynomial

ring.

HH∗(A)/N ≃ K[x2] where x2 = e(1,1) + e(2,2) ∈ HH2(A).
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