Crossed products for matrix rings

Noritsugu Kameyama (joint work with Mitsuo Hoshino and Hirotaka Koga)

Shinshu University

September 7, 2015

Noritsugu Kameyama (Shinshu Univ.) Crossed pro

Crossed products for matrix rings

September 7, 2015 1 /

R : a ring

- **2** Aut(R): the group of ring automorphisms of R
- *R*^σ: the subring of *R* consisting of all *x* ∈ *R* with σ(*x*) = *x* for σ ∈ Aut(*R*)
- $M_n(R)$: the ring of $n \times n$ full matrices over R for $n \ge 2$

<u>Aim</u> We provide a systematic way to define new multiplications on $M_n(R)$. To do so, we divide the construction into two steps, i.e., we will construct two ring extensions A/R and Λ/A such that $\Lambda \cong M_n(R)$ as right *R*-modules. Let

•
$$I = \{0, 1, \dots, n-1\}$$
 be a set of integers

2 \mathbb{Z}_+ the set of non-negative integers.

We fix a pair (q, χ) of an integer $q \in \mathbb{Z}$ and a mapping $\chi : \mathbb{Z}_+ \to \mathbb{Z}$ satisfying the following conditions:

(X0)
$$\chi(0) = 0$$
;
(X1) $\chi(i + kn) = \chi(i) + kq$ for all $(i, k) \in I \times \mathbb{Z}_+$;
(X2) $\chi(i) + \chi(j) \ge \chi(i + j)$ for all $i, j \in \mathbb{Z}_+$.
Also, we fix a triple (σ, c, t) of $\sigma \in Aut(R)$ and $c, t \in R^{\sigma}$ satisfying the following condition:

(*)
$$xc = c\sigma(x), xt = t\sigma^q(x)$$
 for all $x \in R$.

It should be noted that ct = tc.

At first, we will construct a ring extension A/R. Let A be a free right R-module with a basis $\{u_i\}_{i \in I}$. We set

$$u_{i+kn} = u_i t^k$$

for $(i, k) \in I \times \mathbb{Z}_+$ and

$$\omega(i,j) = \chi(i) + \chi(j) - \chi(i+j)$$

for $i, j \in \mathbb{Z}_+$. Note that

- ω is symmetric, i.e., $\omega(i,j) = \omega(j,i)$ for all $i,j \in \mathbb{Z}_+$

Definition 2.1

We define a multiplication on A subject to the following axioms: (A1) $u_i u_j = u_{i+j} c^{\omega(i,j)}$ for all $i, j \in \mathbb{Z}_+$; (A2) $xu_i = u_i \sigma^{\chi(i)}(x)$ for all $x \in R$ and $i \in \mathbb{Z}_+$,

We denote by $\{\delta_i\}_{i \in I}$ the dual basis of $\{u_i\}_{i \in I}$ for the free left *R*-module $\operatorname{Hom}_R(A, R)$, (i.e., $a = \sum_{i \in I} u_i \delta_i(a)$ for all $a \in A$.) Then for any $a, b \in A$ we have

$$ab = \sum_{i,j\in I} u_{i+j} c^{\omega(i,j)} \sigma^{\chi(j)}(\delta_i(a)) \delta_j(b).$$

Proposition 2.2 (Hoshino-K-Koga, 2015)

A is an associative ring with $1 = u_0$ and contains R as a subring via the injective ring homomorphism $R \rightarrow A, x \mapsto u_0 x$.

Next, we will construct a ring extension Λ/A . (To do so, we need the group structure of *I*.) We fix a cyclic permutation of *I*

$$\pi = \left(\begin{array}{ccc} 0 & 1 & \cdots & n-1 \\ 1 & 2 & \cdots & 0 \end{array}\right)$$

and make I a cyclic group with 0 the unit element by the law of composition $I \times I \rightarrow I$, $(i, j) \mapsto \pi^{j}(i)$. It should be noted that

$$i + j = \begin{cases} \pi^j(i) & \text{if } i + j < n, \\ \pi^j(i) + n & \text{if } i + j \ge n \end{cases}$$

for all $i, j \in I$.

Setting $A_i = u_i R$ for $i \in I$, $A = \bigoplus_{i \in I} A_i$ yields an *I*-graded ring with $A_0 = R$.

We denote by $\varepsilon_i : A \to A_i, a \mapsto u_i \delta_i(a)$ the projection for each $i \in I$.

Then the following conditions are satisfied: (E1) $\varepsilon_i \varepsilon_j = 0$ unless i = j and $\sum_{i \in I} \varepsilon_i = id_A$; (E2) $\varepsilon_i(a)\varepsilon_j(b) = \varepsilon_{\pi^j(i)}(\varepsilon_i(a)b)$ for all $a, b \in A$ and $i, j \in I$. Let Λ be a free right A-module with a basis $\{v_i\}_{i \in I}$.

Definition 2.3

we define a multiplication on Λ subject to the following axioms: (L1) $v_i v_j = 0$ unless i = j and $v_i^2 = v_i$ for all $i \in I$; (L2) $av_i = \sum_{j \in I} v_j \varepsilon_{\pi^{-i}(j)}(a)$ for all $a \in A$ and $i \in I$.

Let us denote by $\{\gamma_i\}_{i \in I}$ the dual basis of $\{v_i\}_{i \in I}$ for the free left *A*-module $\operatorname{Hom}_A(\Lambda, A)$, i.e., $\lambda = \sum_{i \in I} v_i \gamma_i(\lambda)$ for all $\lambda \in \Lambda$. It is not difficult to see that

$$\lambda \mu = \sum_{i,j \in I} \mathsf{v}_i \varepsilon_{\pi^{-j}(i)}(\gamma_i(\lambda)) \gamma_j(\mu)$$

for all $\lambda, \mu \in \Lambda$.

Proposition 2.4

 Λ is an associative ring with $1 = \sum_{i \in I} v_i$ and contains A as a subring via the injective ring homomorphism $A \to \Lambda$, $a \mapsto \sum_{i \in I} v_i a$.

Note that

- **1** $\{v_i u_i\}_{i,i \in I}$ is a basis for the free right *R*-module Λ with $\{\delta_i \gamma_i\}_{i,j \in I}$ the dual basis for the free left *R*-module $\operatorname{Hom}_{R}(\Lambda, R)$,
- 2 For any $i \in I$, we have $xv_i = v_i x$ for all $x \in R$.
- \bigcirc Λv_i is a Λ -*R*-bimodule.
- $v_i\Lambda$ is an *R*- Λ -bimodule.

Also, by (L2) $u_k v_j = v_{\pi^k(j)} u_k$ for all $j, k \in I$, so that $v_i \Lambda v_j = v_i u_{\pi^{-j}(i)} R$ and

$$\operatorname{Hom}_{\Lambda}(v_{j}\Lambda, v_{i}\Lambda) \xrightarrow{\sim} R, f \mapsto \delta_{\pi^{-j}(i)}(\gamma_{i}(f(v_{j})))$$

as *R*-*R*-bimodules for all $i, j \in I$. In particular,

$$\operatorname{End}_{\Lambda}(v_i\Lambda) \xrightarrow{\sim} R, f \mapsto \delta_0(\gamma_i(f(v_i)))$$

as rings for all $i \in I$.

Now, setting $e_{ij} = v_i u_{\pi^{-j}(i)}$ for $i, j \in I$, we have a basis $\{e_{ij}\}_{i,j \in I}$ for the free right *R*-module Λ .

Then, we have

•
$$v_i \Lambda v_j = e_{ij} R$$
 for all $i, j \in I$,

② $\{\delta_{\pi^{-j}(i)}\gamma_i\}_{i,j\in I}$ is the duel basis of $\{e_{ij}\}_{i,j\in I}$ for the free left *R*-module Hom_{*R*}(Λ, *R*), i.e.,

$$\lambda = \sum_{i,j\in I} e_{ij} \delta_{\pi^{-j}(i)}(\gamma_i(\lambda))$$

for all $\lambda \in \Lambda$.

In particular,

$$\rho: \Lambda \xrightarrow{\sim} \mathsf{M}_n(R), \lambda \mapsto (\delta_{\pi^{-j}(i)}(\gamma_i(\lambda)))_{i,j \in I}$$

as right *R*-modules.

Theorem 2.5 (Main Theorem)

The multiplication in Λ is subject to the following axioms: (M1) $e_{ij}e_{kl} = 0$ unless j = k; (M2) $e_{ij}e_{jk} = e_{ik}t^{\epsilon(\pi^{-j}(i),\pi^{-k}(j))}c^{\omega(\pi^{-j}(i),\pi^{-k}(j))}$ for all $i, j, k \in I$; (M3) $xe_{ij} = e_{ij}\sigma^{\chi(\pi^{-j}(i))}(x)$ for all $x \in R$ and $i, j \in I$.

where

$$\epsilon(i,j) = \begin{cases} 0 & \text{if } i+j < n, \\ 1 & \text{if } i+j \ge n \end{cases}$$

for $i, j \in I$

Example 2.6

Let

1
$$q = n - 1$$

 $\ 2 \ \ \chi(i+kn)=i+kq \ \ \text{for all} \ (i,k)\in I\times\mathbb{Z}_+.$

Then a pair (q, χ) satisfies (X0), (X1) and (X2), and

$$\omega(i,j) = egin{cases} 0 & ext{if } i+j < n, \ 1 & ext{otherwise} \end{cases}$$

for $i, j \in I$. Also, $x(tc) = (tc)\sigma^n(x)$ for all $x \in R$.

Let $R[X; \sigma]$ be a right skew polynomial ring with trivial derivation, (the multiplication is defined subject to the following rule: $aX = X\sigma(a)$ for all $a \in R$.)

It then follows that $(X^n - tc) = (X^n - tc)R[X; \sigma]$ is a two-sided ideal of $R[X; \sigma]$ and $A \cong R[X; \sigma]/(X^n - tc)$ as extension rings of R.

We recall the notion of Auslander-Gorenstein rings.

Proposition 3.1 (Auslander)

Let R be a left and right noetherian ring. Then for any $n \ge 0$ the following are equivalent.

- (1) In a minimal injective resolution I^{\bullet} of R in Mod-R, flat dim $I^{i} \leq i$ for all $0 \leq i \leq n$.
- (2) In a minimal injective resolution J^{\bullet} of R in Mod- R^{op} , flat dim $J^{i} \leq i$ for all $0 \leq i \leq n$.
- (3) For any $1 \le i \le n+1$, any $M \in \text{mod-}R$ and any submodule X of $\text{Ext}^{i}_{R}(M, R) \in \text{mod-}R^{\text{op}}$ we have $\text{Ext}^{j}_{R^{\text{op}}}(X, R) = 0$ for all $0 \le j < i$.
- (4) For any $1 \le i \le n+1$, any $X \in \text{mod-}R^{\text{op}}$ and any submodule M of $\text{Ext}_{R^{\text{op}}}^{i}(X, R) \in \text{mod-}R$ we have $\text{Ext}_{R}^{j}(M, R) = 0$ for all $0 \le j < i$.

Definition 3.2 (Björk)

R: a left and right noetherian ring

- *R* satisfies the **Auslander condition** $\stackrel{def}{\Leftrightarrow} R$ satisfies the equivalent conditions in Proposition 3.1 for all $n \ge 0$,

Corllary 3.3

The following are equivalent.

- (1) R is an Auslander-Gorenstein ring;
- (2) A is an Auslander-Gorenstein ring;
- (3) Λ is an Auslander-Gorenstein ring.

Thank you for your attension.