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. . . . . .

Notations

.

.
.

1 R : a ring

.

.
.

2 Aut(R): the group of ring automorphisms of R

.

.

.

3 Rσ: the subring of R consisting of all x ∈ R with σ(x) = x for
σ ∈ Aut(R)

.

.

.

4 Mn(R): the ring of n × n full matrices over R for n ≥ 2

Aim We provide a systematic way to define new multiplications on Mn(R).
To do so, we divide the construction into two steps, i.e., we will construct
two ring extensions A/R and Λ/A such that Λ ∼= Mn(R) as right
R-modules.
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. . . . . .

Construction

Let

.

. . 1 I = {0, 1, . . . , n − 1} be a set of integers

.

.
.

2 Z+ the set of non-negative integers.

We fix a pair (q, χ) of an integer q ∈ Z and a mapping χ : Z+ → Z
satisfying the following conditions:
(X0) χ(0) = 0;
(X1) χ(i + kn) = χ(i) + kq for all (i , k) ∈ I × Z+;
(X2) χ(i) + χ(j) ≥ χ(i + j) for all i , j ∈ Z+.
Also, we fix a triple (σ, c, t) of σ ∈ Aut(R) and c , t ∈ Rσ satisfying the
following condition:

(∗) xc = cσ(x), xt = tσq(x) for all x ∈ R.

It should be noted that ct = tc .
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. . . . . .

At first, we will construct a ring extension A/R.
Let A be a free right R-module with a basis {ui}i∈I .
We set

ui+kn = ui t
k

for (i , k) ∈ I × Z+ and

ω(i , j) = χ(i) + χ(j)− χ(i + j)

for i , j ∈ Z+. Note that

.

.

.

1 ω is symmetric, i.e., ω(i , j) = ω(j , i) for all i , j ∈ Z+

.

.

.

2 ω(i + kn, j + ln) = ω(i , j) for all (i , k), (j , l) ∈ I × Z+.
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. . . . . .

.

Definition 2.1

.

.

.

. ..

.

.

We define a multiplication on A subject to the following axioms:
(A1) uiuj = ui+jc

ω(i ,j) for all i , j ∈ Z+;
(A2) xui = uiσ

χ(i)(x) for all x ∈ R and i ∈ Z+,

We denote by {δi}i∈I the dual basis of {ui}i∈I for the free left R-module
HomR(A, R),
(i.e., a =

∑
i∈I uiδi (a) for all a ∈ A.)

Then for any a, b ∈ A we have

ab =
∑

i ,j∈I

ui+jc
ω(i ,j)σχ(j)(δi (a))δj(b).
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. . . . . .

.

Proposition 2.2 (Hoshino-K-Koga, 2015)

.

.

.

. ..

.

.

A is an associative ring with 1 = u0 and contains R as a subring via the
injective ring homomorphism R → A, x 7→ u0x .
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. . . . . .

Next, we will construct a ring extension Λ/A.
(To do so, we need the group structure of I .)
We fix a cyclic permutation of I

π =

(
0 1 · · · n − 1
1 2 · · · 0

)

and make I a cyclic group with 0 the unit element by the law of
composition I × I → I , (i , j) 7→ πj(i).
It should be noted that

i + j =

{
πj(i) if i + j < n,

πj(i) + n if i + j ≥ n

for all i , j ∈ I .
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. . . . . .

Setting Ai = uiR for i ∈ I , A = ⊕i∈IAi yields an I -graded ring with
A0 = R.
We denote by εi : A → Ai , a 7→ uiδi (a) the projection for each i ∈ I .

Then the following conditions are satisfied:
(E1) εiεj = 0 unless i = j and

∑
i∈I εi = idA;

(E2) εi (a)εj(b) = επj (i)(εi (a)b) for all a, b ∈ A and i , j ∈ I .
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. . . . . .

Let Λ be a free right A-module with a basis {vi}i∈I .

.

Definition 2.3

.

.

.

. ..

.

.

we define a multiplication on Λ subject to the following axioms:
(L1) vivj = 0 unless i = j and v2

i = vi for all i ∈ I ;
(L2) avi =

∑
j∈I vjεπ−i (j)(a) for all a ∈ A and i ∈ I .

Let us denote by {γi}i∈I the dual basis of {vi}i∈I for the free left
A-module HomA(Λ, A), i.e., λ =

∑
i∈I viγi (λ) for all λ ∈ Λ.

It is not difficult to see that

λµ =
∑

i ,j∈I

viεπ−j (i)(γi (λ))γj(µ)

for all λ, µ ∈ Λ.

.

Proposition 2.4

.

.

.

. ..

.

.

Λ is an associative ring with 1 =
∑

i∈I vi and contains A as a subring via
the injective ring homomorphism A → Λ, a 7→ ∑

i∈I via.
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. . . . . .

Note that

.

.
.

1 {viuj}i ,j∈I is a basis for the free right R-module Λ with {δjγi}i ,j∈I the
dual basis for the free left R-module HomR(Λ,R),

.

. . 2 For any i ∈ I , we have xvi = vix for all x ∈ R,

.

.
.

3 Λvi is a Λ-R-bimodule,

.

.

.

4 viΛ is an R-Λ-bimodule.

Also, by (L2) ukvj = vπk (j)uk for all j , k ∈ I , so that viΛvj = viuπ−j (i)R
and

HomΛ(vjΛ, viΛ)
∼−→ R, f 7→ δπ−j (i)(γi (f (vj)))

as R-R-bimodules for all i , j ∈ I . In particular,

EndΛ(viΛ)
∼−→ R, f 7→ δ0(γi (f (vi )))

as rings for all i ∈ I .
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. . . . . .

Now, setting eij = viuπ−j (i) for i , j ∈ I , we have a basis {eij}i ,j∈I for the
free right R-module Λ.
Then, we have

.

. . 1 viΛvj = eijR for all i , j ∈ I ,

.

.
.

2 {δπ−j (i)γi}i ,j∈I is the duel basis of {eij}i ,j∈I for the free left R-module
HomR(Λ, R), i.e.,

λ =
∑

i ,j∈I

eijδπ−j (i)(γi (λ))

for all λ ∈ Λ.

In particular,

ρ : Λ
∼−→ Mn(R), λ 7→ (δπ−j (i)(γi (λ)))i ,j∈I

as right R-modules.
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.

Theorem 2.5 (Main Theorem)

.

.

.

. ..

.

.

The multiplication in Λ is subject to the following axioms:
(M1) eijekl = 0 unless j = k;

(M2) eijejk = eiktε(π−j (i),π−k (j))cω(π−j (i),π−k (j)) for all i , j , k ∈ I ;

(M3) xeij = eijσ
χ(π−j (i))(x) for all x ∈ R and i , j ∈ I .

where

ε(i , j) =

{
0 if i + j < n,

1 if i + j ≥ n

for i , j ∈ I
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.

Example 2.6

.

.

.

. ..

.

.

Let

.

. .
1 q = n − 1

.

. .
2 χ(i + kn) = i + kq for all (i , k) ∈ I × Z+.

Then a pair (q, χ) satisfies (X0), (X1) and (X2), and

ω(i , j) =

{
0 if i + j < n,

1 otherwise

for i , j ∈ I . Also, x(tc) = (tc)σn(x) for all x ∈ R.
Let R[X ;σ] be a right skew polynomial ring with trivial derivation,
(the multiplication is defined subject to the following rule: aX = Xσ(a)
for all a ∈ R.)
It then follows that (X n − tc) = (X n − tc)R[X ; σ] is a two-sided ideal of
R[X ; σ] and A ∼= R[X ;σ]/(X n − tc) as extension rings of R.
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. . . . . .

Auslander-Gorenstein rings

We recall the notion of Auslander-Gorenstein rings.

.

Proposition 3.1 (Auslander)

.

.

.

. ..

.

.

Let R be a left and right noetherian ring. Then for any n ≥ 0 the
following are equivalent.

(1) In a minimal injective resolution I • of R in Mod-R, flat dim I i ≤ i for
all 0 ≤ i ≤ n.

(2) In a minimal injective resolution J• of R in Mod-Rop, flat dim J i ≤ i
for all 0 ≤ i ≤ n.

(3) For any 1 ≤ i ≤ n + 1, any M ∈ mod-R and any submodule X of
ExtiR(M,R) ∈ mod-Rop we have ExtjRop(X , R) = 0 for all 0 ≤ j < i .

(4) For any 1 ≤ i ≤ n + 1, any X ∈ mod-Rop and any submodule M of
ExtiRop(X , R) ∈ mod-R we have ExtjR(M,R) = 0 for all 0 ≤ j < i .
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.

Definition 3.2 (Björk)

.

.

.

. ..

.

.

R: a left and right noetherian ring

.

.

.

1 R satisfies the Auslander condition
def⇔ R satisfies the equivalent

conditions in Proposition 3.1 for all n ≥ 0,

.

.

.

2 R is an Auslander-Gorenstein ring
def⇔

inj dim R = inj dim Rop < ∞ and it satisfies the Auslander
condition.
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.

Corllary 3.3

.

.

.

. ..

.

.

The following are equivalent.

(1) R is an Auslander-Gorenstein ring;

(2) A is an Auslander-Gorenstein ring;

(3) Λ is an Auslander-Gorenstein ring.
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Thank you for your attension.
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