Crossed products for matrix rings

Noritsugu Kameyama
(joint work with Mitsuo Hoshino and Hirotaka Koga)

Shinshu University

September 7, 2015

Notations

(1) R : a ring
(2) $\operatorname{Aut}(R)$: the group of ring automorphisms of R
(3) R^{σ} : the subring of R consisting of all $x \in R$ with $\sigma(x)=x$ for $\sigma \in \operatorname{Aut}(R)$
(9) $\mathrm{M}_{n}(R)$: the ring of $n \times n$ full matrices over R for $n \geq 2$

Aim We provide a systematic way to define new multiplications on $\mathrm{M}_{n}(R)$. To do so, we divide the construction into two steps, i.e., we will construct two ring extensions A / R and Λ / A such that $\Lambda \cong \mathrm{M}_{n}(R)$ as right R-modules.

Construction

Let
(1) $I=\{0,1, \ldots, n-1\}$ be a set of integers
(2) \mathbb{Z}_{+}the set of non-negative integers.

We fix a pair (q, χ) of an integer $q \in \mathbb{Z}$ and a mapping $\chi: \mathbb{Z}_{+} \rightarrow \mathbb{Z}$ satisfying the following conditions:
(X0) $\chi(0)=0$;
(X1) $\chi(i+k n)=\chi(i)+k q$ for all $(i, k) \in I \times \mathbb{Z}_{+}$;
(X2) $\chi(i)+\chi(j) \geq \chi(i+j)$ for all $i, j \in \mathbb{Z}_{+}$.
Also, we fix a triple (σ, c, t) of $\sigma \in \operatorname{Aut}(R)$ and $c, t \in R^{\sigma}$ satisfying the following condition:

$$
(*) \quad x c=c \sigma(x), x t=t \sigma^{q}(x) \text { for all } x \in R
$$

It should be noted that $c t=t c$.

At first, we will construct a ring extension A / R. Let A be a free right R-module with a basis $\left\{u_{i}\right\}_{i \in I}$.
We set

$$
u_{i+k n}=u_{i} t^{k}
$$

for $(i, k) \in I \times \mathbb{Z}_{+}$and

$$
\omega(i, j)=\chi(i)+\chi(j)-\chi(i+j)
$$

for $i, j \in \mathbb{Z}_{+}$. Note that
(1) ω is symmetric, i.e., $\omega(i, j)=\omega(j, i)$ for all $i, j \in \mathbb{Z}_{+}$
(2) $\omega(i+k n, j+I n)=\omega(i, j)$ for all $(i, k),(j, I) \in I \times \mathbb{Z}_{+}$.

Definition 2.1

We define a multiplication on A subject to the following axioms:
(A1) $u_{i} u_{j}=u_{i+j} c^{\omega(i, j)}$ for all $i, j \in \mathbb{Z}_{+}$;
(A2) $x u_{i}=u_{i} \sigma^{\chi(i)}(x)$ for all $x \in R$ and $i \in \mathbb{Z}_{+}$,
We denote by $\left\{\delta_{i}\right\}_{i \in I}$ the dual basis of $\left\{u_{i}\right\}_{i \in I}$ for the free left R-module $\operatorname{Hom}_{R}(A, R)$,
(i.e., $a=\sum_{i \in I} u_{i} \delta_{i}(a)$ for all $a \in A$.)

Then for any $a, b \in A$ we have

$$
a b=\sum_{i, j \in I} u_{i+j} c^{\omega(i, j)} \sigma^{\chi(j)}\left(\delta_{i}(a)\right) \delta_{j}(b) .
$$

Proposition 2.2 (Hoshino-K-Koga, 2015)

A is an associative ring with $1=u_{0}$ and contains R as a subring via the injective ring homomorphism $R \rightarrow A, x \mapsto u_{0} x$.

Next, we will construct a ring extension Λ / A.
(To do so, we need the group structure of I.)
We fix a cyclic permutation of I

$$
\pi=\left(\begin{array}{cccc}
0 & 1 & \cdots & n-1 \\
1 & 2 & \cdots & 0
\end{array}\right)
$$

and make I a cyclic group with 0 the unit element by the law of composition $I \times I \rightarrow I,(i, j) \mapsto \pi^{j}(i)$.
It should be noted that

$$
i+j= \begin{cases}\pi^{j}(i) & \text { if } i+j<n \\ \pi^{j}(i)+n & \text { if } i+j \geq n\end{cases}
$$

for all $i, j \in I$.

Setting $A_{i}=u_{i} R$ for $i \in I, A=\oplus_{i \in I} A_{i}$ yields an I-graded ring with $A_{0}=R$.
We denote by $\varepsilon_{i}: A \rightarrow A_{i}, a \mapsto u_{i} \delta_{i}(a)$ the projection for each $i \in I$.

Then the following conditions are satisfied:
(E1) $\varepsilon_{i} \varepsilon_{j}=0$ unless $i=j$ and $\sum_{i \in I} \varepsilon_{i}=\mathrm{id}_{A}$;
(E2) $\varepsilon_{i}(a) \varepsilon_{j}(b)=\varepsilon_{\pi^{j}(i)}\left(\varepsilon_{i}(a) b\right)$ for all $a, b \in A$ and $i, j \in I$.

Let Λ be a free right A-module with a basis $\left\{v_{i}\right\}_{i \in I}$.

Definition 2.3

we define a multiplication on Λ subject to the following axioms:
(L1) $v_{i} v_{j}=0$ unless $i=j$ and $v_{i}^{2}=v_{i}$ for all $i \in I$;
(L2) $a v_{i}=\sum_{j \in I} v_{j} \varepsilon_{\pi^{-i}(j)}(a)$ for all $a \in A$ and $i \in I$.
Let us denote by $\left\{\gamma_{i}\right\}_{i \in I}$ the dual basis of $\left\{v_{i}\right\}_{i \in I}$ for the free left A-module $\operatorname{Hom}_{A}(\Lambda, A)$, i.e., $\lambda=\sum_{i \in I} v_{i} \gamma_{i}(\lambda)$ for all $\lambda \in \Lambda$.
It is not difficult to see that

$$
\lambda \mu=\sum_{i, j \in I} v_{i} \varepsilon_{\pi^{-j}(i)}\left(\gamma_{i}(\lambda)\right) \gamma_{j}(\mu)
$$

for all $\lambda, \mu \in \Lambda$.

Proposition 2.4

Λ is an associative ring with $1=\sum_{i \in I} v_{i}$ and contains A as a subring via the injective ring homomorphism $A \rightarrow \Lambda, a \mapsto \sum_{i \in I} v_{i} a$.

Note that
(1) $\left\{v_{i} u_{j}\right\}_{i, j \in I}$ is a basis for the free right R-module Λ with $\left\{\delta_{j} \gamma_{i}\right\}_{i, j \in I}$ the dual basis for the free left R-module $\operatorname{Hom}_{R}(\Lambda, R)$,
(2) For any $i \in I$, we have $x v_{i}=v_{i} x$ for all $x \in R$,
(3) Λv_{i} is a Λ - R-bimodule,
(9) $v_{i} \Lambda$ is an R - Λ-bimodule.

Also, by (L2) $u_{k} v_{j}=v_{\pi^{k}(j)} u_{k}$ for all $j, k \in I$, so that $v_{i} \Lambda v_{j}=v_{i} u_{\pi^{-j}(i)} R$ and

$$
\operatorname{Hom}_{\Lambda}\left(v_{j} \Lambda, v_{i} \Lambda\right) \xrightarrow{\sim} R, f \mapsto \delta_{\pi^{-j}(i)}\left(\gamma_{i}\left(f\left(v_{j}\right)\right)\right)
$$

as R - R-bimodules for all $i, j \in I$. In particular,

$$
\operatorname{End}_{\Lambda}\left(v_{i} \Lambda\right) \xrightarrow{\sim} R, f \mapsto \delta_{0}\left(\gamma_{i}\left(f\left(v_{i}\right)\right)\right)
$$

as rings for all $i \in I$.

Now, setting $e_{i j}=v_{i} u_{\pi^{-j}(i)}$ for $i, j \in I$, we have a basis $\left\{e_{i j}\right\}_{i, j \in I}$ for the free right R-module Λ.
Then, we have
(1) $v_{i} \wedge v_{j}=e_{i j} R$ for all $i, j \in I$,
(2) $\left\{\delta_{\pi^{-j}(i)} \gamma_{i}\right\}_{i, j \in I}$ is the duel basis of $\left\{e_{i j}\right\}_{i, j \in I}$ for the free left R-module $\operatorname{Hom}_{R}(\Lambda, R)$, i.e.,

$$
\lambda=\sum_{i, j \in I} e_{i j} \delta_{\pi^{-j}(i)}\left(\gamma_{i}(\lambda)\right)
$$

for all $\lambda \in \Lambda$.
In particular,

$$
\rho: \Lambda \xrightarrow{\sim} \mathrm{M}_{n}(R), \lambda \mapsto\left(\delta_{\pi^{-j}(i)}\left(\gamma_{i}(\lambda)\right)\right)_{i, j \in I}
$$

as right R-modules.

Theorem 2.5 (Main Theorem)

The multiplication in Λ is subject to the following axioms:
(M1) $e_{i j} e_{k l}=0$ unless $j=k$;
(M2) $e_{i j} e_{j k}=e_{i k} t^{\epsilon\left(\pi^{-j}(i), \pi^{-k}(j)\right)} c^{\omega\left(\pi^{-j}(i), \pi^{-k}(j)\right)}$ for all $i, j, k \in I$;
(M3) $x e_{i j}=e_{i j} \sigma^{\chi\left(\pi^{-j}(i)\right)}(x)$ for all $x \in R$ and $i, j \in I$.
where

$$
\epsilon(i, j)= \begin{cases}0 & \text { if } i+j<n \\ 1 & \text { if } i+j \geq n\end{cases}
$$

for $i, j \in I$

Example 2.6

Let
(1) $q=n-1$
(2) $\chi(i+k n)=i+k q$ for all $(i, k) \in I \times \mathbb{Z}_{+}$.

Then a pair (q, χ) satisfies (X0), (X1) and (X2), and

$$
\omega(i, j)= \begin{cases}0 & \text { if } i+j<n \\ 1 & \text { otherwise }\end{cases}
$$

for $i, j \in I$. Also, $x(t c)=(t c) \sigma^{n}(x)$ for all $x \in R$.
Let $R[X ; \sigma]$ be a right skew polynomial ring with trivial derivation, (the multiplication is defined subject to the following rule: $a X=X \sigma(a)$ for all $a \in R$.)
It then follows that $\left(X^{n}-t c\right)=\left(X^{n}-t c\right) R[X ; \sigma]$ is a two-sided ideal of $R[X ; \sigma]$ and $A \cong R[X ; \sigma] /\left(X^{n}-t c\right)$ as extension rings of R.

Auslander-Gorenstein rings

We recall the notion of Auslander-Gorenstein rings.

Proposition 3.1 (Auslander)

Let R be a left and right noetherian ring. Then for any $n \geq 0$ the following are equivalent.
(1) In a minimal injective resolution I^{\bullet} of R in $\operatorname{Mod}-R$, flat $\operatorname{dim} I^{i} \leq i$ for all $0 \leq i \leq n$.
(2) In a minimal injective resolution J^{\bullet} of R in Mod- $R^{\text {op }}$, flat $\operatorname{dim} J^{i} \leq i$ for all $0 \leq i \leq n$.
(3) For any $1 \leq i \leq n+1$, any $M \in \bmod -R$ and any submodule X of $\operatorname{Ext}_{R}^{i}(M, R) \in \bmod -R^{\text {op }}$ we have $\operatorname{Ext}_{R^{\text {op }}}^{j}(X, R)=0$ for all $0 \leq j<i$.
(4) For any $1 \leq i \leq n+1$, any $X \in \bmod -R^{\mathrm{op}}$ and any submodule M of $\operatorname{Ext}_{R^{\text {op }}}^{i}(X, R) \in \bmod -R$ we have $\operatorname{Ext}_{R}^{j}(M, R)=0$ for all $0 \leq j<i$.

Definition 3.2 (Björk)

R : a left and right noetherian ring
(1) R satisfies the Auslander condition $\stackrel{\text { def }}{\Leftrightarrow} R$ satisfies the equivalent conditions in Proposition 3.1 for all $n \geq 0$,
(2) R is an Auslander-Gorenstein ring $\stackrel{\text { def }}{\Leftrightarrow}$ inj $\operatorname{dim} R=\operatorname{inj} \operatorname{dim} R^{\mathrm{op}}<\infty$ and it satisfies the Auslander condition.

Corllary 3.3

The following are equivalent.
(1) R is an Auslander-Gorenstein ring;
(2) A is an Auslander-Gorenstein ring;
(3) Λ is an Auslander-Gorenstein ring.

Thank you for your attension.

