The structure of preenvelopes with respect to maximal Cohen-Macaulay modules

Hiroki Matsui

Nagoya University

September 8, 2015

R: a d-dimensional Cohen-Macaulay local ring with canonical module ω MCM: the category of maximal Cohen-Macaulay *R*-modules $(-)^{\dagger} := \operatorname{Hom}_{R}(-, \omega)$ $\delta_{M} : M \to M^{\dagger\dagger}$: the biduality homomorphism of *M* The functor $(-)^{\dagger}$ induces a self duality on MCM:

$$(-)^{\dagger}: \mathsf{MCM} \rightleftharpoons \mathsf{MCM}^{op}: (-)^{\dagger}.$$

 δ_M is an isomorphism if $M \in MCM$. We assume that all *R*-modules are finitely generated.

Theorem (Auslander-Buchweitz)

For any R-module M, there exists a short exact sequence

$$0 \to Y \to X \xrightarrow{\pi} M \to 0$$

such that $X \in MCM$ and $id_R Y < \infty$.

- π is called a maximal Cohen-Macaulay (CM) approximation of M.
- $\operatorname{id}_R Y < \infty \Leftrightarrow \operatorname{Ext}^1_R(\operatorname{MCM}, Y) = 0.$
- special MCM-preenvelope $\stackrel{\mathrm{dual}}{\longleftrightarrow}$ maximal CM approximation

Definition

Let $\mu: M \to X$ be an *R*-homomorphism with $X \in MCM$.

(a) μ is called an MCM-preenvelope of M if

$$\operatorname{Hom}_R(\mu, X') : \operatorname{Hom}_R(X, X') \to \operatorname{Hom}_R(M, X')$$

is an epimorphism for any $X' \in MCM$.

- (b) μ is called a special MCM-preenvelope of M if μ is an MCM-preenvelope and satisfies $\text{Ext}_{R}^{1}(\text{Coker }\mu, \text{MCM}) = 0.$
- (c) μ is called an MCM-envelope of M if μ is an MCM-preenvelope and every $\phi \in \text{End}_R(X)$ that satisfies $\phi \mu = \mu$ is an automorphism.

The notions of MCM-precover, special MCM-precover, and MCM-cover are defined dually.

Remark

- Every MCM-precover is an epimorphism.
- 2 a maximal CM approximation = a special MCM-precover
- an MCM-envelope ⇒ a special MCM-preenvelope ⇒ an MCM-preenvelope The first implication is due to Wakamatsu's lemma.
- An MCM-envelope is unique up to isomorphism.

Theorem

- (Auslander-Buchweitz) Every *R*-module has a special MCM-precover.
- (Yoshino)
 If R is Henselian (e.g. complete), then every R-module has an MCM-cover.

Theorem [Holm]

Every R-module has a special MCM-preenvelope, and if R is Henselian, every R-module has an MCM-envelope.

 $\pi: X \to M^{\dagger}$: a special MCM-precover (resp. an MCM-cover) $\Rightarrow \pi^{\dagger} \delta_{M}: M \to X^{\dagger}$: a special MCM-preenvelope (resp. an MCM-envelope)

Let $\pi: X \to M$ be an *R*-homomorphism such that $X \in MCM$. By definition, the following are equivalent.

- **1** π is a special MCM-precover.
- 2 $\operatorname{Ext}^{1}_{R}(\operatorname{MCM}, \operatorname{Ker} \pi) = 0.$
- 3 $\operatorname{id}_R(\operatorname{Ker} \pi) < \infty$.

Question

When is a given homomorphism $\mu : M \to X$ with $X \in MCM$ a special MCM-preenvelope?

We give an answer to this question by using its kernel and cokernel.

The structure of MCM-preenvelopes

Theorem A

Let $\mu: M \to X$ be an *R*-homomorphism such that $X \in \mathsf{MCM}$. TFAE

- (a) μ is a special MCM-preenvelope of *M*.
- (b) $\operatorname{codim}(\operatorname{Ker} \mu) > 0$ and $\operatorname{Ext}^{1}_{R}(\operatorname{Coker} \mu, \operatorname{MCM}) = 0$.
- (c) $\operatorname{codim}(\operatorname{Ker} \mu) > 0$, and there exists an exact sequence
 - $0
 ightarrow S
 ightarrow {
 m Coker}\, \mu
 ightarrow T
 ightarrow U
 ightarrow 0$ such that
 - odim S > 1, codim U > 2,
 - T satisfies Serre's condition (S₂),
 - $\operatorname{id}_R T^{\dagger} < \infty$ and T^{\dagger} satisfies Serre's condition (S₃).

where, $\operatorname{codim} M := d - \dim M$.

Using Theorem A, we get

- the result of the structure on the special proper MCM-coresolutions, and
- another characterization of special MCM-preenvelopes.

The structure of MCM-preenvelopes

Example

- Let *M* be an *R*-module with codim *M* > 0. Then µ : M → 0 is a special MCM-preenvelope.
- ② Let <u>x</u> = x₁, x₂,..., x_n be an *R*-regular sequence with n ≥ 3. Consider an exact sequence

$$0 \to M \xrightarrow{\mu} R^{\oplus n} \xrightarrow{(x_1, \dots, x_n)} R \to R/(\underline{x}) \to 0.$$

Then μ is a special MCM-preenvelope.

So Let K and C be R-modules with codim K > 0, codim C > 1 and $\sigma \in \operatorname{Ext}^2_R(C, K)$. σ defines an exact sequence

$$0 \to K \to M \xrightarrow{\mu} F \to C \to 0$$

with F a free R-module. Then μ is a special MCM-preenvelope of M.

Definition

Let M be an R-module, and

$$0 \to M \xrightarrow{\delta^0} X^0 \xrightarrow{\delta^1} X^1 \xrightarrow{\delta^2} \cdots$$
 (*)

be an *R*-complex with $X^i \in MCM$ for each *i*. Put $\mu^0 := \delta^0$ and let $\mu^i : \operatorname{Coker} \delta^{i-1} \to X^i$ be the induced morphism from δ^i for i > 0.

- If each μ^i is a special MCM-preenvelope (resp. an MCM-envelope), then we call (*) a special proper MCM-coresolution (resp. a minimal proper MCM-coresolution) of M.
- For a minimal proper MCM-coresolution (*), Coker μⁱ⁻¹ is called an i-th minimal MCM-cosyzygy of M, and it is denoted by Cosyz_{MCM}ⁱM.
- We say a minimal proper MCM-coresolution (*) has length at most n if Xⁿ⁺¹ = 0.

Remark

Suppose R is Henselian.

- A special proper MCM-coresolution and a minimal proper MCM-coresolution exist for any *R*-module.
- For a special proper MCM-coresolution (*),
 - Coker μ^i are unique up to free summands, and
 - Ker μ^i are unique up to isomorphism.
- Minimal MCM-cosyzygies are unique up to isomorphism.

Theorem B

Suppose R is Henselian. Let M be an R-module and

$$0 \to M \xrightarrow{\delta^0} X^0 \xrightarrow{\delta^1} X^1 \xrightarrow{\delta^2} \cdots$$

a special proper MCM-coresolution of M. Put $\mu^0 := \delta^0$ and let μ^i : Coker $\delta^{i-1} \to X^i$ be the induced homomorphisms. Then for each $i \ge 0$, one has

- codim(Ker μ^i) > *i*,
- 2 there exists an exact sequence

$$0
ightarrow S^i
ightarrow {
m Coker}\, \mu^i
ightarrow T^i
ightarrow U^i
ightarrow 0$$

such that

- codim $S^i > i + 1$, codim $U^i > i + 2$,
- T^i satisfies (S_2) ,
- $\operatorname{id}_R(T^i)^{\dagger} < \infty$ and $(T^i)^{\dagger}$ satisfies (S_{i+3}) .

Suppose R is Henselian.

Corollary

For any R-module M,

- $\operatorname{Cosyz}_{\operatorname{MCM}}{}^d M = 0$ and
- $\operatorname{Cosyz_{MCM}}^{d-1}M$ has finite length.

In particular, for any *R*-module *M*, the minimal proper MCM-coresolution of *M* has length at most $\min\{0, d-2\}$.

Remark

This corollary refines a theorem of Holm: For any *R*-module *M*, the minimal proper MCM-coresolution of *M* has length at most min $\{0, d - 1\}$.

Another characterization of special MCM-preenvelopes

Let $\pi : X \to M$ be an *R*-homomorphism such that $X \in MCM$. TFAE (1) π is a special MCM-precover of *M*.

(2) There exists an *R*-complex

$$C = (0 \to C_d \xrightarrow{\delta_{d-1}} C_{d-1} \xrightarrow{\delta_{d-2}} \cdots \to C_1 \xrightarrow{\delta_0} C_0 \xrightarrow{\delta_{-1}} C_{-1} \to 0)$$

such that

• C_i is a finite direct sum of ω for $1 \le i \le d$,

•
$$\delta_{-1} = \pi$$
,

• C is exact.

Another characterization of special MCM-preenvelopes

Theorem C

Let $\mu: M \to X$ be an *R*-homomorphism such that $X \in \mathsf{MCM}$. TFAE

- (1) μ is a special MCM-preenvelope of *M*.
- (2) There exists an *R*-complex

$$C = (0 \to C^{-1} \xrightarrow{\delta^{-1}} C^0 \xrightarrow{\delta^0} C^1 \xrightarrow{\delta^1} C^2 \xrightarrow{\delta^2} \cdots \xrightarrow{\delta^{d-2}} C^{d-1} \to 0)$$

such that

• C^i is free for $1 \le i \le d-1$,

•
$$\delta^{-1} = \mu$$
,

• codim $H^i(C) > i + 1$ for any *i*.

Theorem A

Let $\mu: M \to X$ be an *R*-homomorphism such that $X \in \mathsf{MCM}$. TFAE

- (a) μ is a special MCM-preenvelope of *M*.
- (b) $\operatorname{codim}(\operatorname{Ker} \mu) > 0$ and $\operatorname{Ext}^{1}_{R}(\operatorname{Coker} \mu, \operatorname{MCM}) = 0$.
- (c) $\operatorname{codim}(\operatorname{Ker} \mu) > 0$, and there exists an exact sequence
 - $0
 ightarrow S
 ightarrow {
 m Coker}\, \mu
 ightarrow T
 ightarrow U
 ightarrow 0$ such that
 - codim *S* > 1, codim *U* > 2,

• $\operatorname{id}_R T^{\dagger} < \infty$ and T^{\dagger} satisfies (S₃).

(Outline of the proof of Theorem A) The main part of the proof is the implication (a) \Rightarrow (c). Therefore we give only the proof of (a) \Rightarrow (c).

Lemma 1 (Holm)

If $\mu: M \to X$ is a special MCM-preenvelope, then $\mu^{\dagger}: X^{\dagger} \to M^{\dagger}$ is a special MCM-precover.

Note: The corresponding result for special MCM-precovers does not hold: π :a special MCM-precover $\Rightarrow \pi^{\dagger}$:a special MCM-preenvelope

Lemma 2

For an R-module M, one has

- $\operatorname{codim}(\operatorname{Ker} \delta_M) > 0$
- $\operatorname{codim}(\operatorname{Coker} \delta_M) > 1$
- $\operatorname{codim} \operatorname{Ext}^1_R(M^{\dagger}, \omega) > 2.$

Let $\mu: M \to X$ be a special MCM-preenvelope. By Lemma 1, μ^{\dagger} is a special MCM-precover. In particular, μ^{\dagger} is an epimorphism.

Take a short exact sequence $0 \to Y \to X^{\dagger} \xrightarrow{\mu^{\dagger}} M^{\dagger} \to 0$. Applying $(-)^{\dagger}$ to this sequence, we obtain an exact sequence

$$0 o M^{\dagger\dagger} \xrightarrow{\mu^{\dagger\dagger}} X^{\dagger\dagger} o Y^{\dagger} o \mathsf{Ext}^1_R(M^{\dagger},\omega) o 0.$$

Note that Y has finite injective dimension and satisfies (S_3) . Because $\delta_X \mu = \mu^{\dagger\dagger} \delta_M$, we get another exact sequence

$$egin{aligned} 0 o {\sf Ker}\,\delta_M o {\sf Ker}\,\mu o {\sf Ker}(\mu^{\dagger\dagger}) = 0 \ & o {\sf Coker}\,\delta_M o {\sf Coker}\,\mu o {\sf Coker}(\mu^{\dagger\dagger}) o 0. \end{aligned}$$

This shows $\operatorname{codim}(\operatorname{Ker} \mu) > 0$. Combining these two sequences, we have an exact sequence

$$0 \rightarrow \operatorname{Coker} \delta_M \rightarrow \operatorname{Coker} \mu \rightarrow Y^{\dagger} \rightarrow \operatorname{Ext}^1_R(M^{\dagger}, \omega) \rightarrow 0.$$

We show that this sequence satisfies the condition (c).

We have only to show

- Y^{\dagger} satisfies (S_2) ,
- $\operatorname{id}_R Y^{\dagger\dagger} < \infty$, and
- $Y^{\dagger\dagger}$ satisfies (S₃).

This follows from the next result.

Lemma 3 (Araya-lima)

Let M be an R-module. If M satisfies (S_2) , then $\delta_M : M \to M^{\dagger\dagger}$ is an isomorphism.

Applying this lemma to Y, we conclude that Y satisfies the above assertion. This shows the statement (c). \Box

Thank you for your kind attention.