1 Preliminary results

Let S be a Noetherian prime ring with quotient ring Q and A be a fractional S-ideal. We use the following notation:

$$(S:A)_{l} = \{q \in Q \mid qA \subseteq S\}$$
$$(S:A)_{r} = \{q \in Q \mid Aq \subseteq S\}$$
$$A_{v} = (S:(S:A)_{l})_{r} \supseteq A$$
$$_{v}A = (S:(S:A)_{r})_{l} \supseteq A$$

A is called a *v-ideal* if

$$_{v}A = A = A_{v}$$

A v-ideal A is said to be v-invertible (invertible) if

$$v((S:A)_l A) = S = (A(S:A)_r)_v$$
$$\left((S:A)_l A = S = A(S:A)_r\right)$$

Note that if A is v-invertible, then

$$O_r(A) = S = O_l(A)$$
 and $(S:A)_l = A^{-1} = (S:A)_r$

where

$$O_l(A) = \{q \in Q \mid qA \subseteq A\}, \text{ a left order of } A$$

 $O_r(A) = \{q \in Q \mid Aq \subseteq A\}, \text{ a right order of } A$
 $A^{-1} = \{q \in Q \mid AqA \subseteq A\}$

D : hereditary Noetherian prime ring (an HNP ring for short) with quotient ring *K* R = D[t] : polynomial ring over *D* in an indeterminate *t*.

We put

$$\begin{array}{ll} \cdot V_r(R) &= \{\mathfrak{a} : \text{ ideals } \mid \mathfrak{a} = \mathfrak{a}_v\} \supseteq \\ V_{(m,r)}(R) &= \{\mathfrak{a} \in V_r(R) \mid \mathfrak{a} \text{ is maximal in } V_r(R)\} \\ \cdot V_l(R) &= \{\mathfrak{a} : \text{ ideals } \mid \mathfrak{a} = {}_v\mathfrak{a}\} \supseteq \\ V_{(m,l)}(R) &= \{\mathfrak{a} \in V_l(R) \mid \mathfrak{a} \text{ is maximal in } V_l(R)\} \\ \cdot \operatorname{Spec}_0(R) &= \{\mathfrak{b} : \text{ prime ideals } \mid \mathfrak{b} \cap D = (0) \text{ and} \\ \mathfrak{b} \text{ is a v-ideal}\}. \end{array}$$

Proposition 1(1) $V_{(m,r)}(R) = V_{(m,l)}(R)$ and is equal to $V_m(R) = \{\mathfrak{m}[t], \mathfrak{b} \mid \mathfrak{m} \text{ runs over all maximal ideals of } D$ and $\mathfrak{b} \in Spec_0(R)\}$

(2) If
$$\mathfrak{b} \in Spec_0(R)$$
, then \mathfrak{b} is invertible.
(3) $\{\mathfrak{p}[t] = \mathfrak{m}_1[t] \cap \cdots \cap \mathfrak{m}_k[t], \mathfrak{b} \mid \mathfrak{m}_1, \dots, \mathfrak{m}_k \text{ is a cycle of } D, k \ge 1, \mathfrak{b} \in Spec_0(R)\}$
is the full set of maximal invertible ideals of R .
 $(\mathfrak{m}_1, \dots, \mathfrak{m}_k \text{ is called a cycle of } D \text{ if } \mathfrak{m}_1, \dots, \mathfrak{m}_k \text{ are maximal ideals of } D \text{ and}$
 $O_r(\mathfrak{m}_1) = O_l(\mathfrak{m}_2), \dots, O_r(\mathfrak{m}_{k-1}) = O_l(\mathfrak{m}_k).$

$$O_r(\mathfrak{m}_1) = O_l(\mathfrak{m}_2), \dots, O_r(\mathfrak{m}_{k-1}) = O_l(\mathfrak{m}_k),$$

 $O_r(\mathfrak{m}_k) = O_l(\mathfrak{m}_1).)$

(4) The invertible ideals of R generate an Abelian group whose generators are maximal invertible ideals.

2 Examples

D: HNP ring $\subseteq K$: quotient ring satisfying the following:

(a) there is a cycle $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ such that

 $\mathfrak{m}_1\cap\cdots\cap\mathfrak{m}_n=aD=Da$

for some $a \in D$.

(b) any maximal ideal \mathfrak{n} different from $\mathfrak{m}_i (1 \le i \le n)$ is invertible.

Example 1 Let $D = \begin{pmatrix} \mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix}$, where \mathbb{Z} is the ring of integers and p is a prime number. Then

$$\mathfrak{m}_1 = \begin{pmatrix} p\mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix}, \ \mathfrak{m}_2 = \begin{pmatrix} \mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & p\mathbb{Z} \end{pmatrix}$$

is a cycle and $\mathfrak{m}_1 \cap \mathfrak{m}_2 = \begin{pmatrix} p & p \\ 1 & 0 \end{pmatrix} D = D \begin{pmatrix} p & p \\ 1 & 0 \end{pmatrix}$, and

$$\left\{ \begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} D \mid q: \text{ prime number } \neq p \right\}$$

is the full set of maximal ideals of D different from \mathfrak{m}_1 and \mathfrak{m}_2 . We define a skew derivation (σ, δ) on *D* by

$$\sigma(r) = ara^{-1}$$
 and $\delta(r) = 0$ for all $r \in D$

Let R = D[t] be the polynomial ring over D in an indeterminate t.

 (σ, δ) on *D* is extended to a skew derivation on *R* by $\sigma(t) = t$ and $\delta(t) = a$

Note

- $\sigma(\mathfrak{m}_i) = \mathfrak{m}_{i+1} \ (1 \le i \le n-1), \ \sigma(\mathfrak{m}_n) = \mathfrak{m}_1$
- $\sigma(\mathfrak{n}) = \mathfrak{n} \ (\forall \mathfrak{n} \ (\neq \mathfrak{m}_1, \dots, \mathfrak{m}_n) : \text{maximal ideal})$
- $V_m(R) = \{\mathfrak{m}_i[t], \mathfrak{n}[t], \mathfrak{b} \mid \mathfrak{n} \neq \mathfrak{m}_i \text{ and } \mathfrak{b} \in \operatorname{Spec}_0(R)\}$
- $I_m(R) = \{ \mathfrak{p}[t], \mathfrak{n}[t], \mathfrak{b} \mid \mathfrak{p} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n, \mathfrak{n} \neq \mathfrak{m}_i$ and $\mathfrak{b} \in \operatorname{Spec}_0(R) \}$

is the set of all maximal invertible ideals of R.

Note

• A maximal ideal of K[t] is either

tK[t] or $\omega K[t]$ for some $\omega = k_l t^l + \dots + k_0 \in Z(K[t])$ with $k_l \neq 0, k_0 \neq 0, l \ge 1$, where Z(K[t]) is the center of K[t].

• Any $\mathfrak{b} \in \operatorname{Spec}_0(R)$ is either

 $\mathfrak{b} = tR$ or $\mathfrak{b} = \omega K[t] \cap R$,

where $\omega \in Z(K[t])$ and $\omega K[t]$ is a maximal ideal.

A fractional *R*-ideal a is called

- · σ -invariant if $\sigma(\mathfrak{a}) = \mathfrak{a}$
- $\cdot \ \delta$ -stable if $\delta(\mathfrak{a}) \subseteq \mathfrak{a}$
- · (σ, δ) -stable if it is σ -invariant and δ -stable.

Lemma 2(1) Any projective ideal of R is a product of an invertible ideal and an eventually v-idempotent ideal.

(A v-ideal C is called eventually v-idempotent if $(C^n)_v$ is v-idempotent for some $n \ge 1$, that is, $((C^n)_v^2)_v = (C^n)_v$.)

- (2) Any eventually v-idempotent ideal is not σ -invariant.
- (3) $\mathfrak{n}[t]$ and $\mathfrak{p}[t]$ are (σ, δ) -stable.

- (4) Let $\omega = t$ or $\omega \in Z(K[t])$ and let $\mathfrak{b} = \omega K[t] \cap R$, which is a maximal invertible ideal of R. Then
 - (*i*) \mathfrak{b}^n is σ -invariant for any $n \ge 1$.
 - (*ii*) \mathfrak{b}^n *is* δ *-stable if and only if* $\omega^n K[t]$ *is* δ *-stable if and only if* $\delta(\omega^n) = 0$.
 - (iii)(a) If char K = 0, then \mathfrak{b}^n is not δ -stable for any n. (b) If char $K = p \neq 0$ and $\delta(\omega) \neq 0$, then \mathfrak{b}^p is (σ, δ) -stable and \mathfrak{b}^i is not (σ, δ) -stable $(1 \leq i < p)$.
 - (c) If char $K = p \neq 0$ and $\delta(\omega) = 0$, then \mathfrak{b}^n is (σ, δ) -stable for all $n \geq 1$.
- (5) $\mathfrak{p}[t], \mathfrak{n}[t], \mathfrak{b}$ (in case $\delta(\omega) = 0$) and \mathfrak{b}^p (in case $\delta(\omega) \neq 0$) are (σ, δ) -prime ideals of R.

In the remainder,

• $S = R[x; \sigma, \delta]$: Ore extension in an indeterminate *x*

We will prove that *S* is a maximal order.

Note

For an ideal \mathfrak{a} of R,

 $\mathfrak{a}[x; \sigma, \delta]$: ideal of $S \iff \mathfrak{a} : (\sigma, \delta)$ -stable

Lemma 3 Let A be an ideal of S such that $A = A_v$ and is maximal in $\{B : ideal \mid B = B_v\}$. If $A \cap R = \mathfrak{a} \neq (0)$, then A is equal to one of

- $P = \mathfrak{p}[t][x; \sigma, \delta]$
- $N = \mathfrak{n}[t][x; \sigma, \delta]$
- $B = \mathfrak{b}[x; \sigma, \delta]$ (in case \mathfrak{b} is (σ, δ) -stable) or $C = \mathfrak{b}^p[x; \sigma, \delta]$ (in case \mathfrak{b} is σ -invariant but not δ stable)

Lemma 4 Let A be an ideal of S such that $A = A_v$ and $\mathfrak{a} = A \cap R \neq (0)$. Then \mathfrak{a} is a (σ, δ) -stable invertible ideal and $A = \mathfrak{a}[x; \sigma, \delta]$.

Lemma 5 *Let A be an ideal of S such that A* = A_v *and A* \cap *R* = (0). *Then A is v-invertible.*

Theorem 6 $S = R[x; \sigma, \delta]$ is a maximal order and R is not a maximal order.

Proof. Let *A* be any ideal of *S*. Since $S \subseteq O_l(A) \subseteq O_l(A_v)$, in order to prove $O_l(A) = S$, we may assume that $A = A_v$. By Lemmas 4 and 5, *A* is (v)-invertible.

Hence $O_l(A) = S$ and similarly $O_r(A) = S$, that is S is a maximal order.

Of course R is not a maximal order. \Box

A Noetherian prime ring *R* is called a *unique factorization ring* (a UFR for short) if each prime ideal *P* with $P = P_v$ (or $P = _v P$) is principal, that is, P = bR = Rb for some $b \in R$.

Note

R is a UFR if and only if *R* is a maximal order and each *v*-ideal is principal.

Proposition 7 Suppose char D = 0 and any maximal ideal \mathfrak{n} different from \mathfrak{m}_i $(1 \le i \le n)$ is principal. Then $S = R[x; \sigma, \delta]$ is a UFR but R is not a UFR.