Cayley graphs over a Finite Chain Ring and GCD-Graphs

Yotsanan Meemark

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand

http://pioneer.netserv.chula.ac.th/~myotsana/

9 September 2015
Joint work with Borworn Suntornpoch
Overview

1. GCD Graphs

2. Finite Chain Rings

3. Energy
GCD-Graphs

Let D be a UFD. Let $c \in D$ be a nonzero nonunit element. Assume that the commutative ring $D/(c)$ is finite. Let C be a set of proper divisors of c. Define the **gcd-graph**, $D_c(C)$, to be a graph whose vertex set is the quotient ring $D/(c)$ and edge set is

$$\{\{x + (c), y + (c)\} : x, y \in D \text{ and } \gcd(x - y, c) \in C\}.$$

The gcd considered here is unique up to associate.
GCD-Graphs–Some Remarks

A gcd-graph generalizes gcd-graphs or integral circulant graph (its adjacency matrix is circulant (commuting with $Z = \begin{bmatrix} 0 & 1^{n-1} \\ 1 & 0 \end{bmatrix}$) and all eigenvalues are integers) defined over \mathbb{Z}.

If G is a simple undirected graph on vertices v_1, v_2, \ldots, v_n, then the **adjacency matrix** of G is the matrix $A(G) = [a_{ij}]_{n \times n}$ given by

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are adjacent,} \\ 0 & \text{if } v_i \text{ and } v_j \text{ are non-adjacent.} \end{cases}$$
GCD-Graphs–Some Remarks

If $C = \{1\}$, then

$$\{x + (c), y + (c)\} \text{ is an edge } \Leftrightarrow x - y \text{ is a unit modulo } c,$$

so $D_c(\{1\}) = \text{Cay}(D/(c), (D/(c))^\times)$, called the **unitary Cayley graph**.

GCD-Graphs–Some Remarks

Gcd-graphs are circulant $\iff D/(c)$ is cyclic under addition. This is the case for $D = \mathbb{Z}$ and we can apply the Gauss sum to compute the eigenvalues, eigenvectors and energy.

The sum of absolute values of all eigenvalues of a graph G is called the energy of G and denoted by $E(G)$. The energy is a graph parameter introduced by Gutman arising from the Hückel molecular orbital approximation for the total π-electron energy. Nowadays, the energy of graph is studied for purely mathematical interest.
GCD-Graphs

Write $c = p_1^{s_1} \cdots p_k^{s_k}$ as a product of irreducible elements. Suppose that for each $i \in \{1, 2, \ldots, k\}$, there exists a set $C_i = \{p_i^{a_{i1}}, p_i^{a_{i2}}, \ldots, p_i^{a_{iri}}\}$, with $0 \leq a_{i1} < a_{i2} < \cdots < a_{iri} \leq s_i - 1$ so that

$$C = \{p_1^{a_{1t_1}} \cdots p_k^{a_{kt_k}} : t_i \in \{1, 2, \ldots, r_i\} \text{ for all } i \in \{1, 2, \ldots, k\}\}.$$

Then for $x, y \in D/(c),$

x is adjacent to $y \iff \gcd(x - y, p_i^{s_i}) \in D^\times C_i$ for all $i.$
This implies that

\[D_c(C) = \text{Cay}(D/(p_1^{s_1}), C_1) \otimes \cdots \otimes \text{Cay}(D/(p_k^{s_k}), C_k), \]

where each factor on the right is the Cayley graph over the finite chain ring \(D/(p_i^{s_i}) \).

For two graphs \(G \) and \(H \), their tensor product \(G \otimes H \) is the graph with vertex-set \(V(G) \times V(H) \), where \((u, v)\) is adjacent to \((u', v')\) \iff \(u \) is adjacent to \(u' \) in \(G \) and \(v \) is adjacent to \(v' \) in \(H \). The adjacency matrix of \(G \otimes H \) is the Kronecker product of \(A(G) \) and \(A(H) \), i.e.,

\[A(G \otimes H) = A(G) \otimes A(H). \]

Hence, \(E(G \otimes H) = E(G)E(H) \).
Theorem

Let D be a UFD and a nonzero nonunit $c = p_1^{s_1} \ldots p_k^{s_k} \in D$ factored as a product of irreducible elements. Assume that $D/(c)$ is finite and for each $i \in \{1, 2, \ldots, k\}$, there exists a set $C_i = \{p_i^{a_{i1}}, p_i^{a_{i2}}, \ldots, p_i^{a_{iri}}\}$, with $0 \leq a_{i1} < a_{i2} < \cdots < a_{iri} \leq s_i - 1$ such that

$$C = \{p_1^{a_{1t_1}} \cdots p_k^{a_{kt_k}} : t_i \in \{1, 2, \ldots, r_i\} \text{ for all } i \in \{1, 2, \ldots, k\}\}.$$

Then

$$E(D_c(C)) = E(D_{p_1^{s_1}}(C_1)) \cdots E(D_{p_k^{s_k}}(C_k)).$$
A ring is called a **chain ring** if all its ideals form a chain under inclusion.

For example, \mathbb{Z}_{p^n}, p a prime and $n \in \mathbb{N}$, is a chain ring. Also, every field is a chain ring.

If R is a finite commutative ring, it can be proven that:
R is a chain ring \iff R is local whose maximal ideal is principal.
Let R be a finite chain ring with unique maximal ideal M and residue field of q elements. Let s be the nilpotency of R, that is, the least positive integer such that $M^s = \{0\}$. It can be shown that we have the chain of ideals

$$R \supset M \supset M^2 \supset \cdots \supset M^s = \{0\}.$$

Write $R = M^0$. By Lemma 2.4 of Norton, we also have $|M^i| = q^{s-i}$ for all $0 \leq i \leq s$, and so $|M^i/M^{i+1}| = q$ for all $0 \leq i < s$.

Thus, $|R| = q^s$. Moreover, M is principal generated by a $\theta \in M \setminus M^2$ and hence any element $x \in R$ can be written as

$$x = v_0 + v_1 \theta + v_2 \theta^2 + \cdots + v_{s-1} \theta^{s-1},$$

where $v_i \in \mathcal{V} = \{ e_0, e_1, \ldots, e_{p^t-1} \}$, a fixed set of representatives of cosets in R/M. Let

$$\mathcal{C} = (M^{a_1} \setminus M^{a_1+1}) \cup (M^{a_2} \setminus M^{a_2+1}) \cup \cdots \cup (M^{a_r} \setminus M^{a_r+1}),$$

where $0 \leq a_1 < a_2 < \cdots < a_r \leq s - 1.$
Consider the Cayley graph \(\text{Cay}(R, C) \) whose vertex set is \(R \) and \(x, y \in R \) are adjacent if and only if \(x - y \in C \).

This graph generalizes the gcd-graph defined over \(\mathbb{Z}/p^s\mathbb{Z} \) with the set \(C = \{ p^{a_1}, p^{a_2}, \ldots, p^{a_r} \} \) of proper divisors of \(p^s \) where two vertices \(a, b \in \mathbb{Z}/p^s\mathbb{Z} \) are adjacent if and only if \(\gcd(b - a, p^s) = p^{a_i} \) for some \(i \in \{1, 2, \ldots, r\} \).

The adjacency condition can be stated in terms of ideals as \(b - a \in p^{a_i}\mathbb{Z} \setminus p^{a_i+1}\mathbb{Z} \) for some \(i \in \{1, 2, \ldots, r\} \).
Adjacency matrix of Cay\((R, C)\)

For \(x, y \in R\) of the forms

\[
x = v_0 + v_1 \theta + v_2 \theta^2 + \cdots + v_{s-1} \theta^{s-1},
\]
\[
y = u_0 + u_1 \theta + v_2 \theta^2 + \cdots + u_{s-1} \theta^{s-1},
\]

for some \(v_i, u_j \in V\), we have

\[x - y \in R \setminus M \iff v_0 \neq u_0.\]
Adjacency matrix of Cay\((R, C)\)

Then the adjacency matrix for \(\text{Cay}(R, C)\) is

\[
A_0 =
\begin{pmatrix}
e_1 + M & e_2 + M & \cdots & e_q + M \\
A_1 & B_1 & \cdots & B_1 \\
B_1 & A_1 & \cdots & B_1 \\
B_1 & B_1 & \cdots & B_1 \\
\vdots & \vdots & \ddots & \vdots \\
B_1 & B_1 & \cdots & A_1
\end{pmatrix},
\]

where

\[
B_1 = \begin{cases}
J_{q^{s-1} \times q^{s-1}} & \text{if } R \setminus M \subseteq C \\
0_{q^{s-1} \times q^{s-1}} & \text{if } R \setminus M \not\subseteq C,
\end{cases}
\]

and \(A_1\) is a \(q^{s-1} \times q^{s-1}\) submatrix depending on \(M^i, i \geq 1\).
Adjacency matrix of Cay\((R, \mathcal{C})\)

If \(B_1 = 0_{q^{s-1} \times q^{s-1}}\), then

\[A_0 = I_q \otimes A_1\]

(Process A)

and if \(B_1 = J_{q^{s-1} \times q^{s-1}}\), we have

\[A_0 = (I_q \otimes \overline{A_1}).\]

(Process B)

Here, \(J_{n \times n}\) is the \(n \times n\) all 1’s matrix and \(\overline{X} = J - I - X\).
Next, we consider $x, y \in M$ such that

\[x = v_1 \theta + v_2 \theta^2 + \cdots + v_{s-1} \theta^{s-1}, \]
\[y = u_1 \theta + v_2 \theta^2 + \cdots + u_{s-1} \theta^{s-1}, \]

for some $v_i, u_j \in V$. Then

\[x - y \in M \setminus M^2 \iff v_1 \neq u_1. \]
Adjacency matrix of Cay(R, C)

Similarly, we have submatrices

\[
B_2 = \begin{cases}
J_{q^{s-2} \times q^{s-2}} & \text{if } M \setminus M^2 \subseteq C \\
0_{q^{s-2} \times q^{s-2}} & \text{if } M \setminus M^2 \not\subseteq C,
\end{cases}
\]

and A_2, which is a $q^{s-2} \times q^{s-2}$ submatrix depending on M^i for $i \geq 2$ such that

\[
A_1 = \begin{cases}
I_q \otimes A_2 & \text{if } B_2 = 0_{q^{s-2} \times q^{s-2}} \\
\frac{I_q \otimes A_2}{(I_q \otimes A_2)} & \text{if } B_2 = J_{q^{s-2} \times q^{s-2}}.
\end{cases}
\]

Continuing these processes yields the sets of submatrices $\{A_1, \ldots, A_{s-1}\}$ and $\{B_1, \ldots, B_{s-1}\}$.
If $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of A of respective multiplicities m_1, \ldots, m_k, we use the notation

$$\text{Spec } A = \begin{pmatrix} \lambda_1 & \ldots & \lambda_k \\ m_1 & \ldots & m_k \end{pmatrix}$$

to describe the spectrum of A.
Lemma

Let $i \in \{1, 2, \ldots, s - 1\}$. Assume that $\text{Spec } A_i = \begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ m_1 & m_2 & \cdots & m_k \end{pmatrix}$ with λ_1 is the largest eigenvalues. Then

$$\text{Spec } (I_q \otimes \overline{A_i}) = \begin{pmatrix} q^{s-i}(q - 1) + \lambda_1 & \lambda_1 - q^{s-i} \\ 1 & q - 1 \end{pmatrix} \begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ q(m_1 - 1) & qm_2 & \cdots & qm_k \end{pmatrix}.$$

In particular, if $m_1 = 1$, then

$$\text{Spec } (I_q \otimes \overline{A_i}) = \begin{pmatrix} q^{s-i}(q - 1) + \lambda_1 & \lambda_1 - q^{s-i} & \lambda_2 & \cdots & \lambda_k \\ 1 & q - 1 & qm_2 & \cdots & qm_k \end{pmatrix}.$$

Repeatedly applying Process A, Process B and this lemma yield the following two lemmas on eigenvalues of Cay(R, C).
Lemma (Eigenvalues of $\text{Cay}(R, C)$)

Let R be a finite chain ring with unique maximal ideal M, residue field of q elements and of nilpotency s. Let

$$C = (M^{a_1} \setminus M^{a_1+1}) \cup (M^{a_2} \setminus M^{a_2+1}) \cup \ldots \cup (M^{a_r} \setminus M^{a_r+1}),$$

with $0 \leq a_1 < a_2 < \cdots < a_r \leq s - 1$. If $a_r = s - 1$, then the eigenvalues of $\text{Cay}(R, C)$ are as follows:

1. $(q - 1) \sum_{i=1}^{r} q^{s-a_i-1}$ with multiplicity q^{a_1},
2. $-q^{s-a_k-1} + (q - 1) \sum_{i=k}^{r} q^{s-a_i-1}$ with multiplicity $q^{a_k-1}(q - 1)$ for $k = 2, \ldots, r$,
3. $(q - 1) \sum_{i=k}^{r} q^{s-a_i-1}$ with multiplicity $q^{a_k-a_k-1-1} - q^{a_k-1+1}$ for $k = 2, \ldots, r$,
4. -1 with multiplicity $q^{a_r}(q - 1)$.
Lemma (Eigenvalues of Cay(R, C))

Let R be a finite chain ring with unique maximal ideal M, residue field of q elements and of nilpotency s. Let

$$ C = (M^{a_1} \setminus M^{a_1+1}) \cup (M^{a_2} \setminus M^{a_2+1}) \cup \cdots \cup (M^{a_r} \setminus M^{a_r+1}), $$

with $0 \leq a_1 < a_2 < \cdots < a_r \leq s - 1$. If $a_r \neq s - 1$, then the eigenvalues of Cay(R, C) are as follows:

1. $(q - 1) \sum_{i=1}^{r} q^{s-a_i-1}$ with multiplicity q^{a_1},

2. $-q^{s-a_{k-1}-1} + (q - 1) \sum_{i=k}^{r} q^{s-a_i-1}$ with multiplicity $q^{a_{k-1}}(q - 1)$ for $k = 2, \ldots, r$,

3. $(q - 1) \sum_{i=k}^{r} q^{s-a_i-1}$ with multiplicity $q^{a_k} - q^{a_{k-1}+1}$ for $k = 2, \ldots, r$,

4. $-q^{s-a_r-1}$ with multiplicity $q^{a_r}(q - 1)$,

5. 0 with multiplicity $q^{a_r+1}(q^{s-a_r-1} - 1)$.
Finally, we compute the energy of the graph $\text{Cay}(R, C)$.

Theorem (Energy of $\text{Cay}(R, C)$)

Let R be a finite chain ring with unique maximal ideal M, residue field of q elements and of nilpotency s. Let

$$C = (M^{a_1} \setminus M^{a_1+1}) \cup (M^{a_2} \setminus M^{a_2+1}) \cup \ldots \cup (M^{a_r} \setminus M^{a_r+1}),$$

with $0 \leq a_1 < a_2 < \cdots < a_r \leq s - 1$. Then

$$E(\text{Cay}(R, C)) = 2(q - 1) \left(q^{s-1}r - (q - 1) \sum_{k=1}^{r-1} \sum_{i=k+1}^{r} q^{s-a_i+a_k-1} \right).$$
Thank You

http://pioneer.netserv.chula.ac.th/~myotsana/