Higher products on

Yoneda Ext algberas

Hiroyuki Minamoto

(Osaka Prefecture University)

9-th of September 2015

You know

$$
\begin{aligned}
& \mathbf{0} \rightarrow \mathrm{M}_{1} \rightarrow \mathrm{X} \rightarrow \mathrm{M}_{\mathbf{2}} \rightarrow \mathbf{0} \\
& \mathbf{0} \rightarrow \mathrm{M}_{\mathbf{2}} \rightarrow \mathrm{Y} \rightarrow \mathrm{M}_{\mathbf{3}} \rightarrow \mathbf{0}
\end{aligned}
$$

Splicing \Downarrow

$\mathbf{0} \rightarrow \mathrm{M}_{1} \rightarrow \mathrm{X} \rightarrow \mathrm{Y} \rightarrow \mathrm{M}_{3} \rightarrow \mathbf{0}$

Yoneda product on Ext.

$$
\begin{gathered}
0 \rightarrow \mathrm{M}_{1} \rightarrow \mathrm{X} \rightarrow \mathrm{M}_{2} \rightarrow \mathbf{0} \\
0 \rightarrow \mathrm{M}_{2} \rightarrow \mathrm{Y} \rightarrow \mathrm{M}_{3} \rightarrow 0 \\
0 \rightarrow \mathrm{M}_{\mathbf{3}} \rightarrow \mathrm{Z} \rightarrow \mathrm{M}_{4} \rightarrow 0 \\
\text { ????? } \Downarrow \\
0 \rightarrow \mathrm{M}_{1} \rightarrow \mathrm{U} \rightarrow \mathrm{~V} \rightarrow \mathrm{M}_{4} \rightarrow \mathbf{0}
\end{gathered}
$$

Massey product on Ext.

DG-algebras and triple Massey products.

DG-algebras $1 / 3$
Let R a dg-algebra.
That is $R:=\bigoplus_{i \in \mathbb{Z}} R^{i}$ a graded algebra equipped with a differential ∂,
which is a morphism of degree 1 satisfying

$$
\begin{gathered}
\partial^{2}=0, \\
\partial(\mathrm{xy})=\partial(\mathrm{x}) \mathrm{y}+(-1)^{|x|} \mathrm{x} \partial \mathrm{y}
\end{gathered}
$$

where

$$
|x|:=\operatorname{deg} x
$$

DG-algebras 2/3
$Z(R):=\operatorname{Ker}(\partial)$: the cocycle group. $B(R):=\operatorname{Im}(\partial)$: the coboundary group. $H(R):=\frac{Z(R)}{B(R)}$: the cohomology group.
For a cocycle $x \in Z(R)$, [x] denotes the cohomology class, i.e., $[\mathrm{x}]:=\mathrm{x}+\mathrm{B}(\mathrm{R}) \in \mathbf{H}(\mathrm{R})$

DG-algebras 3/3

The cohomology group $H(R)$ comes with a graded algebra structure. The multiplication

$$
[x][y]:=[x y]
$$

gives the cohomolgoy group $\mathrm{H}(\mathrm{R})$ a structure of graded algebra.

Example of dg-algebra: the endomorphism DG-algebra

A: an ordinary algebra.
M: a left A-module.
$P^{\bullet} \xrightarrow{\simeq} M$: a projective resolution of M.
Then
the endomorphism algebra $R=\operatorname{End}_{\mathrm{A}}\left(\mathrm{P}^{\bullet}\right)$ has a canonical dg-algebra structure.

$$
H(R) \cong \operatorname{Ext}_{A}(M, M)
$$

(An isomorphism of graded algebras.)

The cohomology group $\mathrm{H}(\mathrm{R})$

 has more structures than associative multiplication. First we introduce triple Massey product, which is partially defined 3 -ary operation of degree -1 .Triple Massey product (Outline)
From $\xi, \eta, \zeta \in \mathbf{H}(\mathbf{R})$ such that

$$
\xi \eta=0, \quad \eta \zeta=0
$$

we construct cocycles \mathbf{w} of degree

$$
|\mathbf{w}|=|\xi|+|\eta|+|\zeta|-1 .
$$

"The cohomology classes [w] are called triple Massey product of $\xi, \eta, \zeta^{\prime \prime}$.

Triple Massey products $\mathbf{1 / 4}$
Let $\xi, \eta, \zeta \in \mathbf{H}(\mathrm{R})$ such that

$$
\xi \eta=0, \quad \eta \zeta=0 .
$$

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{Z}(\mathrm{R})$ be cocycles which represent ξ, η, ζ.
Then $\xi \eta=0 \Longrightarrow x y \in B(R)$
$\exists u \in \mathbf{R}^{|\xi|+|\eta|-1}$ such that $\mathrm{xy}=\partial \mathrm{u}$.
$\begin{aligned} \eta \zeta= & 0 \\ & \exists \mathrm{v}\end{aligned} \quad \underset{\mathbf{R}^{|\eta|+|\zeta|-1}}{ }$ such that $\mathrm{yz}=\partial \mathrm{v}$.

Triple Massey products 2/4
We set

$$
\mathrm{w}:=(-1)^{|\mathrm{x}|+|\mathrm{y}|} \mathrm{xv}+(-1)^{|\mathrm{y}|+1} \mathrm{uz} .
$$

Claim 2.1
\mathbf{w} is cocycle.
\because Using the equations $\partial \mathrm{x}=0, \partial \mathrm{z}=0$, $x y=\partial u, y z=\partial v$, we have
$\partial(w)=(-1)^{|y|} x y z+(-1)^{|y|+1} x y z=0$

Triple Massey products 3/4

The degree $|w|$ of w is

$$
|\mathbf{w}|=|\xi|+|\eta|+|\zeta|-\mathbf{1}
$$

Since w is a cocycle, we can take a cohomology class [w].
Remark 2.2
The cohomology class [\mathbf{w}] does depend on the choices of $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}$.

Triple Massey product 4/4

Definition 1
The triple Massey product $\langle\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\zeta}\rangle$ of $\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\zeta}$ is a subset of cohomology algebra

$$
\langle\xi, \eta, \zeta\rangle \subset \mathrm{H}^{|\xi|+|\eta|+|\zeta|-1} \mathbf{(R)}
$$

consisting of [w] obtained in the above way.

Question

Recall

$\operatorname{Ext}_{\mathrm{A}}^{\mathrm{n}}(\mathrm{M}, \mathrm{M})$

$\left\{0 \rightarrow \mathrm{M} \rightarrow \mathrm{X}_{1} \rightarrow \cdots \rightarrow \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{M} \rightarrow \mathbf{0}\right\}$

The multiplication on $\operatorname{Ext}_{A}(M, M)$ splices the exact sequences.
Can we express triple Massey product on $\operatorname{Ext}_{A}(\mathrm{M}, \mathrm{M})$ in terms of exact sequences?

Triple Massey products of three short exact sequences.

Outline $\mathbf{1 / 2}$

Let A be an algebra over a field k. For a short exact sequence x

$$
\mathrm{x}: \mathbf{0} \rightarrow \mathrm{M}_{1} \rightarrow \mathrm{X} \rightarrow \mathrm{M}_{2} \rightarrow \mathbf{0}
$$

$\{x\} \in \operatorname{Ext}_{A}^{1}\left(M_{2}, M_{1}\right)$ denotes the corresponding cohomology class.

Outline 2/2
For short exact sequences x, y, z such that

$$
\{x\}\{y\}=0, \quad\{y\}\{z\}=0
$$

we compute triple Massey product of $\{x\},\{y\},\{z\}$, in terms of exact sequences.
Since $1+1+1-1=2$
$\langle\{x\},\{y\},\{z\}\rangle \subset \operatorname{Ext}_{A}^{2}\left(M_{4}, M_{1}\right)$ consist of classes of exact sequence of length 4

$$
\mathbf{0} \rightarrow \mathrm{M}_{1} \rightarrow \mathrm{U} \rightarrow \mathrm{~V} \rightarrow \mathrm{M}_{4} \rightarrow \mathbf{0}
$$

Recalling basic fact $\mathbf{1 / 2}$
Let x, y be exact sequences.

$$
\begin{aligned}
& x: 0 \rightarrow M_{1} \rightarrow X \xrightarrow{f} M_{2} \rightarrow 0 \\
& y: 0 \rightarrow M_{2} \xrightarrow{\mathrm{~g}} \mathrm{Y} \rightarrow \mathrm{M}_{3} \rightarrow 0
\end{aligned}
$$

Recall that TFAE:

- $\{x\}\{y\}=0$ in $\operatorname{Ext}_{A}\left(M_{3}, M_{1}\right)$
- $\exists \tilde{f}: \widetilde{X} \rightarrow Y$ such that $f: X \rightarrow M_{2}$ is the pull-back of \tilde{f} along $g: M_{2} \rightarrow Y$.
- $\exists \hat{g}: X \rightarrow \widehat{\mathbf{Y}}$ such that $\mathbf{g}: \mathbf{M}_{2} \rightarrow \mathbf{Y}$ is the push-out of \hat{g} along $f: X \rightarrow M_{2}$.

Recalling basic fact 2/2

The second condition:

$$
\begin{aligned}
& \mathbf{0} \longrightarrow \mathbf{M} \longrightarrow \mathbf{X} \xrightarrow{\mathbf{f}} \mathbf{M}_{2} \longrightarrow \mathbf{0} \\
& \mathbf{0} \longrightarrow \mathbf{M} \longrightarrow \widetilde{\mathbf{X}} \xrightarrow{\tilde{\mathbf{f}}} \stackrel{\mid \mathrm{g}}{\mathbf{Y}} \longrightarrow \mathbf{0}
\end{aligned}
$$

The third condition :

Triple Massey product of short exact sequences 1/3.
Let x, y, z be exact sequences

$$
\begin{aligned}
& \mathrm{x}: 0 \rightarrow M_{1} \rightarrow X \xrightarrow{\mathrm{f}} \mathrm{M}_{2} \rightarrow \mathbf{0} \\
& \mathrm{y}: 0 \rightarrow \mathrm{M}_{2} \xrightarrow{\mathrm{~g}} \mathrm{Y} \xrightarrow{\mathrm{~h}} \mathrm{M}_{3} \rightarrow \mathbf{0} \\
& \mathrm{z}: 0 \rightarrow \mathrm{M}_{3} \xrightarrow{\mathrm{~h}} \mathrm{Z} \rightarrow \mathrm{M}_{4} \rightarrow \mathbf{0}
\end{aligned}
$$

such that

$$
\{x\}\{y\}=0,\{y\}\{z\}=0 .
$$

Triple Massey product of short exact sequences 2/3.

$$
\{x\}\{y\}=0
$$

$$
\mathbf{0} \longrightarrow \mathbf{M}_{\mathbf{1}} \longrightarrow \mathbf{X} \xrightarrow{\mathbf{f}} \mathbf{M}_{\mathbf{2}} \longrightarrow \mathbf{0}
$$

$$
\mathbf{0} \longrightarrow \mathbf{M}_{\mathbf{1}} \longrightarrow \stackrel{\downarrow}{\mathbf{X}} \xrightarrow{\tilde{\mathbf{f}}} \stackrel{\stackrel{\mathrm{g}}{\mathbf{Y}}}{\longrightarrow} \longrightarrow \mathbf{0}
$$

$$
\{y\}\{z\}=0
$$

$$
\begin{aligned}
& \mathbf{0} \longrightarrow \mathbf{Y} \xrightarrow{\hat{k}} \hat{\mathbf{Z}} \longrightarrow \mathbf{M}_{4} \longrightarrow \mathbf{0} \\
& \mathbf{0} \longrightarrow \mathbf{M}_{3} \xrightarrow{\mathbf{k}} \mathbf{Z} \longrightarrow \mathbf{M}_{4} \longrightarrow \mathbf{0}
\end{aligned}
$$

Triple Massey product of short exact sequences 3/3.

By splicing

$$
\begin{aligned}
& 0 \rightarrow \mathrm{M}_{\mathbf{1}} \rightarrow \widetilde{\mathrm{X}} \rightarrow \mathrm{Y} \rightarrow \mathbf{0} \\
& \mathbf{0} \rightarrow \mathrm{Y} \rightarrow \widehat{\mathrm{Z}} \rightarrow \mathrm{M}_{4} \rightarrow \mathbf{0}
\end{aligned}
$$

we obtain
$\mathbf{w}: \mathbf{0} \rightarrow \mathrm{M}_{\mathbf{1}} \rightarrow \widetilde{\mathbf{X}} \rightarrow \widehat{\mathbf{Z}} \rightarrow \mathrm{M}_{4} \rightarrow \mathbf{0}$
Proposition 3.1
$\mathbf{- w} \in\langle\{x\},\{\mathbf{y}\},\{\mathbf{z}\}\rangle \subset \operatorname{Ext}_{\mathbf{A}}^{2}\left(\mathbf{M}_{4}, \mathbf{M}_{\mathbf{1}}\right)$

A composition series like expression 1/3

The middle term X of

$$
\mathrm{x}: \mathbf{0} \rightarrow \mathrm{M}_{1} \rightarrow \mathrm{X} \rightarrow \mathrm{M}_{2} \rightarrow \mathbf{0}
$$

has a filtration $F=\left\{F_{1} \subset F_{2}\right\}$

$$
M_{1}=F_{1} \subset F_{2}=X, \quad F_{2} / F_{1}=M_{2}
$$

We express the exact sequence x as

A composition series like expression 2/3

$$
y: 0 \rightarrow M_{2} \rightarrow Y \rightarrow M_{3} \rightarrow 0
$$

is

$$
\mathbf{0} \longrightarrow M_{2} \longrightarrow M_{2} M_{2} M_{3} \longrightarrow 0
$$

is

A composition series like expression 3/3

$$
\mathbf{w}: \mathbf{0} \rightarrow \mathrm{M}_{1} \rightarrow \widetilde{\mathrm{X}} \rightarrow \widehat{\mathbf{Z}} \rightarrow \mathrm{M}_{4} \rightarrow \mathbf{0}
$$

Prop 3.1 (restate). By triple Massey product

$$
\begin{aligned}
& \mathrm{M}_{3} \quad \mathrm{M}_{4} \\
& M_{2} M_{3} \\
& \mathbf{O} \longrightarrow \mathrm{M}_{1} \longrightarrow \mathrm{M}_{1} \mathrm{M}_{\mathbf{2}} \\
& \mathrm{M}_{4} \longrightarrow \mathbf{0}
\end{aligned}
$$

is obtained from

In other words, by reversing triple Massey product

$$
\begin{array}{cc}
& \begin{array}{l}
M_{3} \\
M_{2} \\
\\
0
\end{array} M_{1} M_{3} \\
M_{1}
\end{array} M_{2} M_{4} \longrightarrow 0
$$

is decomposed into
M_{2}
$\mathbf{0} \longrightarrow \mathrm{M}_{1} \longrightarrow \mathrm{M}_{1} \quad \mathrm{M}_{\mathbf{2}} \longrightarrow \mathbf{0}$
M_{3}
$\mathbf{0} \longrightarrow \mathrm{M}_{\mathbf{2}} \longrightarrow \mathrm{M}_{\mathbf{2}} \quad \mathrm{M}_{\mathbf{3}} \longrightarrow \mathbf{0}$
M_{4}
$\mathbf{O} \longrightarrow \mathrm{M}_{3} \longrightarrow \mathrm{M}_{\mathbf{3}} \quad \mathrm{M}_{\mathbf{4}} \longrightarrow \mathbf{0}$

is obtained from

by higher Massey product.

Application: Generation of $\mathbf{E x t}_{\mathbf{A}}^{2}(\mathbf{S}, \mathbf{S})$

Proposition 3.2
Let A be a finite dimensional algebra, $\mathrm{S}:=\oplus$ (simple modules).
Then $\operatorname{Ext}_{\mathbf{A}}^{2}(\mathbf{S}, \mathbf{S})$ is generated by $\operatorname{Ext}_{\mathbf{A}}^{\mathbf{1}} \mathbf{(S , S)}$ using higher Massey products.

"Proof"

Every exact sequence

$$
\mathbf{0} \rightarrow \mathbf{S} \rightarrow \mathbf{U} \rightarrow \mathbf{V} \rightarrow \mathbf{S} \rightarrow \mathbf{0}
$$ is of the form S_{i} are simple modules.

Higher Massey products and A_{∞}-products on $H(R)$.

Higher Massey product $\mathbf{1 / 2}$

For $n \geq 4$, n-th Massey products is partially defined n-ary operation of degree $2-\mathrm{n}$.
For $\xi_{1}, \xi_{2}, \ldots, \xi_{\mathbf{n}} \in \mathbf{H}(\mathbf{R})$,

$$
\xi_{1} \xi_{2}=0, \xi_{2} \xi_{3}=0, \ldots, \xi_{\mathrm{n}-1} \xi_{\mathrm{n}}=0
$$

is a necessary condition to define n-th Massey product, but not a sufficient condition.

Higher Massey product 2 /2

If n-th Massey product $\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle$ is defined, it is a subset of cohomology group of degree $\left|\xi_{1}\right|+\left|\xi_{2}\right|+\cdots+\left|\xi_{n}\right|-(n-2)$.

$$
\left\langle\xi_{1}, \ldots, \xi_{n}\right\rangle \subset H^{\left|\xi_{1}\right|+\left|\xi_{2}\right|+\cdots+\left|\xi_{n}\right|-(n-2)}(R) .
$$

\mathbf{A}_{∞}-products $\mathbf{1 / 2}$
A_{∞}-product on a graded module H is a collection of morphisms $m_{n}: \mathbf{H}^{\otimes n} \rightarrow H$ of degree $2-\mathbf{n}$ for $\mathbf{n} \geq 1$ which satisfies the Stasheff identities
$\sum(-1)^{i \mathbf{j}+\mathrm{k}^{\prime}} \mathbf{m}_{\mathbf{i}+1+\mathrm{k}}\left(\mathbf{i d}_{\mathbf{H}}^{\otimes \mathrm{i}} \otimes \mathbf{m}_{\mathbf{j}} \otimes \mathbf{i d}_{\mathbf{H}}^{\otimes \mathrm{k}}\right)=\mathbf{0}$ $i+j+k=n$
for $n \geq 1$
\mathbf{A}_{∞}-products $2 / 2$

- If $\mathbf{m}_{\mathbf{n}}=\mathbf{0}$ for $\mathbf{n} \neq 1,2$,
then m_{2} is an associative multiplication and m_{1} is a differential w.r.t m_{2}, and H is a DG algebra.
- If $\mathbf{m}_{\mathbf{1}}=\mathbf{0}$,
then m_{2} is an associative multiplication and H is a graded algebra.
The higher multiplications $m_{n}(\mathbf{n} \geq 3)$
can be viewed as an additional structure on the graded algebra H .

Kadeishvili's Theorem

Theorem 2
Let \mathbf{R} be a $D G$-algebra and $\mathbf{H}:=\mathbf{H}(\mathbf{R})$. Then $\exists \mathbf{m}_{\mathbf{n}}: \mathbf{H}^{\otimes \mathbf{n}} \rightarrow \mathbf{H}$ for $\mathbf{n} \geq \mathbf{3}$ which makes \mathbf{H} an \mathbf{A}_{∞}-algebra such that \mathbf{H} is quasi-isomorphic to \mathbf{R} as \mathbf{A}_{∞}-algebras. Moreover, such \mathbf{A}_{∞}-algebra structure on \mathbf{H} is unique up to non-canonical isomorphisms.

Relation between Massey product and \mathbf{A}_{∞}-product on H(R)

Theorem 3 (Lu-Palmieri-Wu-Zhang)
Let \mathbf{R} be a $D G$-algebra, $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\mathbf{n}} \in \mathbf{H}(\mathbf{R})$.
Assume that Massey product $\left\langle\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{\mathbf{n}}\right\rangle$ is defined.
Then
$\pm \mathbf{m}_{\mathbf{n}}\left(\xi_{1}, \ldots, \xi_{\mathrm{n}}\right) \in\left\langle\xi_{1}, \ldots, \xi_{\mathrm{n}}\right\rangle \subset \mathbf{H}(\mathrm{R})$.
where \mathbf{A}_{∞}-products $\mathbf{m}_{\mathbf{n}}(\mathbf{n} \geq 3)$ is obtained by the Merkulov construction.

Applications

Application: Generation of $\operatorname{Ext}_{\mathrm{A}}(\mathbf{S}, \mathbf{S})$ by higher products

Theorem 4 (Gugenheim-May, Keller)
Let $\mathbf{A}=\bigoplus_{\mathbf{i} \geq 0} \mathbf{A}_{\mathbf{i}}$ be a locally finite graded algebra over a field and
S $:=\oplus$ (simple modules)
Then the extension algebra $\operatorname{Ext}_{\mathbf{A}}(\mathbf{S}, \mathbf{S})$ is generated by $\mathbf{E x t}_{\mathbf{A}}^{0}(\mathbf{S}, \mathbf{S})$ and $\mathbf{E x t}_{\mathbf{A}}^{1}(\mathbf{S}, \mathbf{S})$ using Massey products.

Remark 5.1

- Gugenheim-May showed that $\operatorname{Ext}_{\mathbf{A}}(\mathbf{S}, \mathbf{S})$ is generated by $\operatorname{Ext}_{\mathbf{A}}^{0}(\mathbf{S}, \mathbf{S})$ and $\operatorname{Ext}_{\mathbf{A}}^{1}(\mathbf{S}, \mathbf{S})$ using Matric Massey products.
Their main tool was Algebraic Eilenberg-Moore spectral sequence.
- Keller did not write any proof. He stated that $\mathbf{E x t}_{\mathbf{A}}(\mathbf{S}, \mathbf{S})$ is generated by $\operatorname{Ext}_{A}^{0}(S, S)$ and $\operatorname{Ext}_{A}^{1}(S, S)$ using \mathbf{A}_{∞} products.

Application of Theorem 4: Koszulity and higher products

Corollary 5 (Keller)
Let A be a locally finite non-negatively graded algebra such that the augmentation algebra $\mathbf{A}_{\mathbf{0}}$ is semi-simple. Then the followings are equivalent:

(1) \mathbf{A} is Koszul.

(2) the \mathbf{A}_{∞}-product on the Ext algebra $\operatorname{Ext}_{A}(S, S)$ vanish.
(3) the Matric Massey products on the Ext algebra $\operatorname{Ext}_{\mathrm{A}}(\mathrm{S}, \mathrm{S})$ vanish.
(4) the Massey products on the Ext algebra $\mathrm{Ext}_{\mathrm{A}}(\mathrm{S}, \mathrm{S})$ vanish.

Application: Generation of $\operatorname{Ext}_{\mathbb{R}}(\kappa(\mathfrak{p}), \kappa(\mathfrak{p}))$ by higher products

Theorem 6

Let \mathbf{R} be a Noetherian algebra with the center $\mathbf{Z}=\mathbf{Z}(\mathbf{R})$ and \mathfrak{p} a maximal ideal of \mathbf{Z}.
Set $\kappa(\mathfrak{p}):=\mathbf{R} \otimes_{z} \mathbf{Z}_{\mathfrak{p}} / \mathfrak{p} \mathbf{Z}_{\mathfrak{p}}$.
Then the Ext algebra $\mathbf{E}=\operatorname{Ext}_{\mathbf{R}}(\kappa(\mathfrak{p}), \kappa(\mathfrak{p}))$ is generated by $\mathbf{E}^{\mathbf{0}}$ and $\mathbf{E}^{\mathbf{1}}$ using Massey products.

Thank you

