
HIGHER APR TILTING PRESERVE n-REPRESENTATION
INFINITENESS

YUYA MIZUNO AND KOTA YAMAURA

Abstract. We show that m-APR tilting preserves n-representation infiniteness for 1 ≤
m ≤ n. Moreover, we show that these tilting modules lift to tilting modules for the
corresponding higher preprojective algebras, which is (n + 1)-CY algebras. We also
study the interplay of the two kinds of tilting modules.

1. Introduction

In this note, we show thatm-APR tilting modules preserve n-representation infiniteness
for m with 1 ≤ m ≤ n. By this fact, we obtain a large family of n-representation infinite
algebras. Our next result is that these modules lift to tilting modules over the corre-
sponding (n+1)-preprojective algebras. Moreover, we show that the (n+1)-preprojective
algebra of an m-APR tilted algebra is isomorphic to the endomorphism algebra of the
corresponding tilting module induced by the m-APR tilting module. This also implies
that we obtain a family of (n+1)-CY algebras, which are derived equivalent to each other.
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Notations. Let K be an algebraically closed field. We denote by D := HomK(−, K)
the K-dual. An algebra means a K-algebra which is indecomposable as a ring. For an
algebra Λ, we denote by ModΛ the category of right Λ-modules and by modΛ the category
of finitely generated Λ-modules. If Λ is Z-graded, we denote by ModZ Λ the category of Z-
graded Λ-modules and by modZ Λ the category of finitely generated Z-graded Λ-modules.

2. Preliminaries

2.1. n-representation infinite algebras. Let Λ be a finite dimensional algebra of global
dimension at most n. We let Db(Λ) := Db(modΛ) and denote the Nakayama functor by

ν := −⊗L
ΛDΛ ≃ DRHomΛ(−,Λ) : Db(Λ) −→ Db(Λ).

The detailed version of this paper will be submitted for publication elsewhere.

–96–



Then ν gives a Serre functor, i.e. there exists a functorial isomorphism

HomDb(Λ)(X,Y ) ≃ DHomDb(Λ)(Y, νX)

for any X, Y ∈ Db(Λ). A quasi-inverse of ν is given by

ν− := RHomΛ(DΛ,−) ≃ −⊗L
ΛRHomΛ(DΛ,Λ) : Db(Λ) −→ Db(Λ).

We let

νn := ν ◦ [−n] and ν−
n := ν− ◦ [n].

Then we recall the definition of n-representation infinite algebras as follows.

Definition 1. [4] A finite dimensional algebra Λ is called n-representation infinite if it
satisfies gl.dimΛ ≤ n and ν−i

n (X) ∈ modΛ for any i ≥ 0.

2.2. m-APR tilting modules. Let Λ be an algebra. A Λ-module T is called tilting if
it satisfies the following conditions.

(T1) There exists an exact sequence

0 → Pm → · · · · · ·P1 → P0 → T → 0

where each Pi is a finitely generated projective Λ-module.
(T2) ExtiΛ(T, T ) = 0 for any i > 0.
(T3) There exists an exact sequence

0 → Λ → T0 → T1 → · · · · → Tm → 0

where each Ti belongs to addT .

In this case, there exists a triangle-equivalence between Db(Λ) and Db(End(T )).
The following tilting modules play a central role in this paper.

Definition 2. Let Λ be a finite dimensional algebra of global dimension at most n. We
assume that there is a simple projective Λ-module S satisfying ExtiΛ(DΛ, S) = 0 for any
1 ≤ i < n. Take a direct sum decomposition Λ = S⊕Q as a Λ-module. In [5, Proposition
3.2] (and its proof), it was shown that there exists a minimal projective resolution

0 → S
a0−→ P1

a1−→ · · · · · · an−1−−−→ Pn
an−→ τ−n (S) → 0

of τ−n (S) such that each Pi belongs to addQ. Let Km := Im am for 0 ≤ m ≤ n. Note
that K0 = S and Kn = τ−n (S). Then it was shown that Q ⊕ Km is a tilting module
with projective dimension m. Following [5], we call it the m-APR (=Auslander-Platzeck-
Reiten) tilting module with respect to S.

If Λ is an n-representation infinite algebra with a simple projective module S, then the
above condition ExtiΛ(DΛ, S) = 0 (1 ≤ i < n) is automatically satisfied. Thus any simple
projective module gives an m-APR tilting module for n-representation infinite algebras.
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2.3. (n+1)-preprojective algebras. Next we recall the definition of (n+1)-preprojective
algebras and their property. In the case of n = 1, the algebras coincide with the (classical)
preprojective algebras.

Definition 3. [6] Let Λ be a finite dimensional algebra. The (n+1)-preprojective algebra

Λ̂ for Λ is a tensor algebra

Λ̂ := TΛ(Ext
n
Λ(DΛ,Λ))

of Λop ⊗K Λ-module ExtnΛ(DΛ,Λ). This algebra can be regarded as a positively graded
algebra by

Λ̂i = ExtnΛ(DΛ,Λ)⊗
i
Λ =

i︷ ︸︸ ︷
ExtnΛ(DΛ,Λ)⊗Λ · · · · · · ⊗Λ ExtnΛ(DΛ,Λ).

We remark that the (n+1)-preprojective algebra is the 0-th homology of Keller’s derived
(n+ 1)-preprojective DG algebra [8].

Moreover, we recall the following definition, which is a graded analog of Ginzburg’s
Calabi-Yau algebras.

Definition 4. Let A =
⊕

i≥0 Ai be a positively graded algebra such that dimK Ai < ∞
for any i ≥ 0. We denote by Ae := Aop ⊗K A. We call A bimodule n-Calabi-Yau of
Gorenstein parameter 1 if it satisfies the following conditions.

(1) A ∈ Kb(projZAe).
(2) RHomAe(A,Ae)[n](−1) ≃ A in D(ModZAe).

Then n-representation infinite algebras and bimodule CY algebras have a close rela-
tionship as follows (see [4, Theorem 4.35]).

Theorem 5. [1, 8, 9] There is a one-to-one correspondence between isomorphism classes
of n-representation infinite algebras Λ and isomorphism classes of graded bimodule (n+1)-
CY algebras A of Gorenstein parameter 1. The correspondence is given by

Λ 7→ Λ̂ and A 7→ A0.

The following result implies that bimodule n-CY algebras provide n-CY triangulated
categories.

Theorem 6. [7, Lemma 4.1][3, Proposition 3.2.4] Let A be a bimodule n-CY algebra.
Then there exists a functorial isomorphism

HomD(ModA)(M,N) ≃ DHomD(ModA)(N,M [n])

for any N ∈ D(ModA) whose total homology is finite dimensional and any M ∈ D(ModA).

3. Our results

Let Λ be an n-representation infinite algebra. Assume that there exists a simple pro-
jective Λ-module S and take a direct sum decomposition Λ = S ⊕ Q as a Λ-module. As
Definition 2, we have a minimal projective resolution

0 → S
a0−→ P1

a1−→ · · · · · · an−1−−−→ Pn
an−→ τ−n (S) → 0(3.1)
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of τ−n (S) such that each Pi belongs to addQ. Let Ki := Im ai and we fix m with 0 ≤ m ≤
n. Then we denote, respectively, the m-APR tilting Λ-module and the endomorphism
algebra by

T := Q⊕Km and Γ := EndΛ(T ).(3.2)

Our first result is the following one, which is a generalization of [4, Theorem 2.13].

Theorem 7. Under the above setting, the algebra Γ is n-representation infinite.

Moreover we show that m-APR tilting modules over n-representation infinite algebras
lift to tilting modules over the corresponding (n+ 1)-preprojective algebras.

Let Λ̂ :=
⊕

i≥0 Λ̂i and D(Λ̂) := D(Mod Λ̂). For a Z-graded Λ̂-module X, we write Xℓ

the degree ℓ-th part of X. For a Z-graded finitely generated Λ̂-module X, the algebra
EndΛ̂(X) can be regarded as a Z-graded algebra by EndΛ̂(X)i = HomΛ̂(X,X(i))0, where
(i) is a graded shift functor and HomΛ̂(X,X)0 := {f ∈ HomΛ̂(X,X) | f(Xi) ⊂ Xi for any i}.

Moreover, an algebra Λop⊗K Λ̂ can be regarded as a Z-graded algebra by (Λop⊗K Λ̂)i :=

Λop ⊗K (Λ̂)i. Thus we regard Λ̂ as a Z-graded (Λop ⊗K Λ̂)-module and we have a functor

(̂ ) := −⊗Λ Λ̂ : modΛ −→ modZ Λ̂.

Note that we have

X̂i =

{
0 (i ≤ 0)

τ−i
n (X) (i ≥ 0)

for any X ∈ modΛ. Then we obtain the following results.

Theorem 8. Under the above setting, the following assertions hold.

(1) T̂ is a tilting Λ̂-module of projective dimension m.

(2) EndΛ̂(T̂ ) is isomorphic to the (n+1)-preprojective algebra Γ̂ of Γ. In particular,

EndΛ̂(T̂ ) is a graded bimodule (n+1)-CY algebra of Gorenstein parameter 1.

For the case of m = n, m-APR tilting modules have a particularly nice property as
stated below.

Corollary 9. Assume that T is an n-APR tilting Λ-module. Then there exists an iso-

morphism Λ̂ ≃ Γ̂ of algebras.

Example 10.

(1) First we give an example for the classical case, namely the case of n = m = 1. Let
Q be the following quiver.

4

""E
EE

EE
E

3 //

<<yyyyyy
2 // 1

We consider the path algebra Λ := KQ of Q, which is 1-representation infinite,
and the 1-APR tilting Λ-module T associated with vertex 1. Then Γ := EndΛ(T )
is also a 1-representation infinite algebra, which is the path algebra of the quiver
obtained from Q by reversing the arrows ending at the vertex 1.
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It is known that the 2-preprojetive algebras Λ̂ and Γ̂ are given by the double
quiver of the quiver of Λ and Γ with some relations respectively. Moreover T in-

duces a tilting Λ̂-module T̂ with Γ̂ ≃ EndΛ̂(T̂ ) ≃ Λ̂ by Theorem 8 and Proposition
9.
These results imply the compatibility of the following diagram of quivers, where

horizontal arrows indicate tilts of T and T̂ , respectively, and vertical arrows indi-
cate taking 2-preprojective algebras.
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(2) Next we give an example for the case m = 1 < 2 = n. We note that the structure
of 3-CY algebras has been extensively studied and it is known that they have a
close relationship with quivers with potentials (QPs).
Let Q be a quiver

4

x3y3

��

1x4

y4ks

3
x2

y2
+3 2,

x1 y1

KS

and W := x1x2x3x4 − y1y2y3y4 + x1y2x3y4 − y1x2y3x4 a potential on Q and
C := {x4, y4} a cut. Then the truncated Jacobian algebra Λ of (Q,W,C) is a
2-representation infinite algebra (see [1, section 6]), whose quiver is the left upper
one in the picture below. We can consider the 1-APR tilting Λ-module T associ-
ated with vertex 1. By Theorem 7, Γ := EndΛ(T ) is also a 2-representation infinite

algebra. Moreover T induces a tilting Λ̂-module T̂ with Γ̂ ≃ EndΛ̂(T̂ ).
In this example, we can understand the change of quivers with relations of tilts

and the 3-preprojective algebras. Indeed, it is known that the quiver with relations
of Γ can be calculated by applying mutation of graded QPs. On the other hand,

the 3-preprojective algebra Λ̂ is given as the Jacobian algebra of (Q,W ) (see [8]),

and EndΛ̂(T̂ ) is given as the Jacobian algebra of the QP obtained by mutating
(Q,W ).
Therefore, we have the following diagram of quivers, where horizontal arrows

indicate tilts of T and T̂ , respectively, and vertical arrows indicate taking 3-
preprojective algebras.
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(3) Finally we give an example for the case n = m = 2. Let Q be a quiver

4
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��

x4

y4
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3
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r4

ffLLLLLLLLLLLLLLLLLLL

and W := (x1x4 − x2x3)r1 + (x1y4 − y2x3)r2 + (y1x4 − x2y3)r3 + (y1y4 − y2y3)r4
a potential on Q and C := {r1, r2, r3, r4} a cut. Then the truncated Jacobian
algebra Λ of (Q,W,C) is a 2-representation infinite algebra given in [4, Example
2.14], whose quiver is the left upper one in the picture below. We can consider the
2-APR tilting Λ-module T associated with vertex 2. By Theorem 7, Γ := EndΛ(T )
is a 2-representation infinite algebra (this also follows from [4, Theorem 2.13]).

Moreover T induces a tilting Λ̂-module T̂ with Γ̂ ≃ EndΛ̂(T̂ ) ≃ Λ̂.
In this example, the quiver of Γ can be calculated by the same argument of [5,

Theorem 3.11], and the 3-preprojective alegbra Λ̂ is given as the Jacobian algebra
of (Q,W ).
Thus, we have the following diagram of quivers, where horizontal arrows indicate

tilts of T and T̂ , respectively, and vertical arrows indicate taking 3-preprojective
algebras.
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