ON MODULES OF INFINITE REDUCED GRADE

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

ABSTRACT. Let R, A be right Noetherian rings and V an (A, R)-bimodule. Our aim is to provide a sufficient condition on V which enables A to inherit from R certain homological properties. Especially, we will show that if the generalized Nakayama conjecture is true for R then so is for A.

INTRODUCTION

In this talk we are mainly concerned with the generalized Nakayama conjecture which states that if R is a right Noetherian ring then every simple right R-module S with $\operatorname{Ext}_{R}^{i}(S, R) = 0$ for all $i \geq 1$ would be torsionless, i.e., $\operatorname{Hom}_{R}(S, R) \neq 0$ (see [1]).

For any ring R, we denote by Mod-R the category of right R-modules and by mod-R the full subcategory of Mod-R consisting of finitely presented modules, and left R-modules are considered as right R^{op} -modules, where R^{op} denotes the opposite ring of R.

Throughout the rest of this talk, R stands for a right Noetherian ring. We denote by \mathcal{G}_R the full subcategory of mod-R consisting of modules $X \in \text{mod-}R$ with $\text{Ext}_R^i(X, R) = 0$ for all $i \geq 1$ and by \mathcal{G}_R^0 the full subcategory of \mathcal{G}_R consisting of $X \in \mathcal{G}_R$ with $\text{Hom}_R(X, R) = 0$. Then the generalized Nakayama conjecture is equivalent to that \mathcal{G}_R^0 would not contain any simple module.

1. Preliminaries

Let $\{S_{\lambda}\}_{\lambda \in \Lambda}$ be a complete set of non-isomorphic simple modules in Mod- R^{op} and $E_{\lambda} = E_{R^{\text{op}}}(S_{\lambda})$ the injective envelope of S_{λ} in Mod- R^{op} for each $\lambda \in \Lambda$.

Lemma 1. For any $M \in Mod-R^{op}$ the following are equivalent.

(1) M = 0.

(2) $\operatorname{Hom}_{R^{\operatorname{op}}}(M, E_{\lambda}) = 0$ for all $\lambda \in \Lambda$.

Lemma 2. For any $X \in \text{mod-}R$ and any injective $E \in \text{Mod-}R^{\text{op}}$ we have

 $X \otimes_R E \xrightarrow{\sim} \operatorname{Hom}_{R^{\operatorname{op}}}(\operatorname{Hom}_R(X, R), E).$

Lemma 3. For any $X \in \text{mod-}R$ the following are equivalent.

- (1) $\operatorname{Hom}_{R}(X, R) = 0.$
- (2) $X \otimes_R E_{\lambda} = 0$ for all $\lambda \in \Lambda$.

Lemma 4. For any $X \in \text{mod-}R$ and any injective $E \in \text{Mod-}R^{\text{op}}$ we have

$$\operatorname{Hor}_{i}^{R}(X, E) \to \operatorname{Hom}_{R^{\operatorname{op}}}(\operatorname{Ext}_{R}^{i}(X, R), E)$$

for all $i \geq 0$.

The detailed version of this paper will be submitted for publication elsewhere.

Lemma 5. For any $X \in \text{mod-}R$ and any family of injectives $\{E_i\}_{i \in I}$ in Mod- R^{op} we have

$$X \otimes_R \prod_{i \in I} E_i \xrightarrow{\sim} \prod_{i \in I} X \otimes_R E_i$$

2. Main results

Throughout the rest of this talk, A is another right Noetherian ring and V is an (A, R)bimodule satisfying the following three conditions:

- (a) $V \in \mathcal{G}_R$ in Mod-R.
- (b) $V \in Mod-A^{op}$ is faithfully flat.
- (c) inj dim $V \otimes_R E_{\lambda} < \infty$ in Mod- A^{op} for all $\lambda \in \Lambda$.

Remark 6. If $\operatorname{Hom}_{R}(V, R) \in \operatorname{Mod} A$ has finite projective dimension then the condition (c) is satisfied.

Lemma 7. We have $X \otimes_A V \in \mathcal{G}_R$ for all $X \in \mathcal{G}_A$.

Theorem 8. The following hold.

- (1) If $\mathcal{G}_R^0 = \{0\}$ then $\mathcal{G}_A^0 = \{0\}$. (2) If \mathcal{G}_R consists only of torsionless modules then so does \mathcal{G}_A .

Remark 9. If R is a left and right Noetherian ring and if \mathcal{G}_R consists only of torsionless modules then every $X \in \mathcal{G}_R$ is Gorenstein projective (see e.g. [4]).

Corollary 10. Assume that for any maximal right ideal \mathfrak{m} in A, setting $\mathfrak{A} = \{x \in R \mid x \in R \mid x \in R \mid x \in R \}$ $Vx \subset \mathfrak{m}V$, R/\mathfrak{A} is a semisimple ring. If the generalized Nakayama conjecture is true for R then so is for A.

References

- [1] M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Am. Math. Soc. 52(1975), 69-74.
- [2] M. Hoshino, N. Kameyama and H. Koga, On modules of infinite reduced grade, in preparation.
- [3] M. Hoshino, N. Kameyama and H. Koga, Group-graded and group-bigraded rings, J. Algebra Appl. Vol. 14, No. 07 (印刷中). DOI:10.1142/S0219498815501005
- [4] M. Hoshino and H. Koga, Zaks' lemma for coherent rings, Algebras and Representation Theory 16 (2013), 1647-1660.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA Ibaraki, 305-8571, Japan *E-mail address*: hoshino@math.tsukuba.ac.jp

DEPARTMENT OF GENERAL EDUCATION SALESIAN POLYTECHNIC Токуо, 194-0212, Јаран E-mail address: n-kameyama@salesio-sp.ac.jp SCHOOL OF INFORMATION ENVIRONMENT TOKYO DENKI UNIVERSITY CHIBA, 270-1382, JAPAN *E-mail address*: koga@mail.dendai.ac.jp