ON MODULES OF INFINITE REDUCED GRADE

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

Abstract. Let R, A be right Noetherian rings and V an (A, R)-bimodule. Our aim is to provide a sufficient condition on V which enables A to inherit from R certain homological properties. Especially, we will show that if the generalized Nakayama conjecture is true for R then so is for A.

Introduction

In this talk we are mainly concerned with the generalized Nakayama conjecture which states that if R is a right Noetherian ring then every simple right R-module S with $\text{Ext}^i_R(S, R) = 0$ for all $i \geq 1$ would be torsionless, i.e., $\text{Hom}_R(S, R) \neq 0$ (see [1]).

For any ring R, we denote by Mod_R the category of right R-modules and by mod_R the full subcategory of Mod_R consisting of finitely presented modules, and left R-modules are considered as right R^{op}-modules, where R^{op} denotes the opposite ring of R.

Throughout the rest of this talk, R stands for a right Noetherian ring. We denote by G_R the full subcategory of mod_R consisting of modules $X \in \text{mod}_R$ with $\text{Ext}^i_R(X, R) = 0$ for all $i \geq 1$ and by G^0_R the full subcategory of G_R consisting of $X \in G_R$ with $\text{Hom}_R(X, R) = 0$. Then the generalized Nakayama conjecture is equivalent to that G^0_R would not contain any simple module.

1. Preliminaries

Let $\{S_\lambda\}_{\lambda \in \Lambda}$ be a complete set of non-isomorphic simple modules in Mod^{op}_R and $E_\lambda = E_{R^{\text{op}}}(S_\lambda)$ the injective envelope of S_λ in Mod^{op}_R for each $\lambda \in \Lambda$.

Lemma 1. For any $M \in \text{Mod}^{\text{op}}_R$ the following are equivalent.

1. $M = 0$.
2. $\text{Hom}_{R^{\text{op}}}(M, E_\lambda) = 0$ for all $\lambda \in \Lambda$.

Lemma 2. For any $X \in \text{mod}_R$ and any injective $E \in \text{Mod}^{\text{op}}_R$ we have

$X \otimes_R E \overset{\sim}{\rightarrow} \text{Hom}_{R^{\text{op}}}(\text{Hom}_R(X, R), E)$.

Lemma 3. For any $X \in \text{mod}_R$ the following are equivalent.

1. $\text{Hom}_R(X, R) = 0$.
2. $X \otimes_R E_\lambda = 0$ for all $\lambda \in \Lambda$.

Lemma 4. For any $X \in \text{mod}_R$ and any injective $E \in \text{Mod}^{\text{op}}_R$ we have

$\text{Tor}^R_i(X, E) \overset{\sim}{\rightarrow} \text{Hom}_{R^{\text{op}}}(\text{Ext}^R_i(X, R), E)$

for all $i \geq 0$.

The detailed version of this paper will be submitted for publication elsewhere.
Lemma 5. For any $X \in \text{mod-}R$ and any family of injectives $\{E_i\}_{i \in I}$ in $\text{Mod-}R^{\text{op}}$ we have

$$X \otimes_R \prod_{i \in I} E_i \cong \prod_{i \in I} X \otimes_R E_i.$$

2. Main results

Throughout the rest of this talk, A is another right Noetherian ring and V is an (A, R)-bimodule satisfying the following three conditions:

(a) $V \in \mathcal{G}_R$ in $\text{Mod-}R$.

(b) $V \in \text{Mod-}A^{\text{op}}$ is faithfully flat.

(c) $\text{inj dim} \, V \otimes_R E_\lambda < \infty$ in $\text{Mod-}A^{\text{op}}$ for all $\lambda \in \Lambda$.

Remark 6. If $\text{Hom}_R(V, R) \in \text{Mod-}A$ has finite projective dimension then the condition (c) is satisfied.

Lemma 7. We have $X \otimes_A V \in \mathcal{G}_R$ for all $X \in \mathcal{G}_A$.

Theorem 8. The following hold.

1. If $\mathcal{G}_R^0 = \{0\}$ then $\mathcal{G}_A^0 = \{0\}$.

2. If \mathcal{G}_R consists only of torsionless modules then so does \mathcal{G}_A.

Remark 9. If R is a left and right Noetherian ring and if \mathcal{G}_R consists only of torsionless modules then every $X \in \mathcal{G}_R$ is Gorenstein projective (see e.g. [4]).

Corollary 10. Assume that for any maximal right ideal m in A, setting $\mathfrak{A} = \{x \in R \mid Vx \subseteq mV\}$, R/\mathfrak{A} is a semisimple ring. If the generalized Nakayama conjecture is true for R then so is for A.

References

Institute of Mathematics
University of Tsukuba
Ibaraki, 305-8571, Japan
E-mail address: hoshino@math.tsukuba.ac.jp

Department of General Education
Salesian Polytechnic
Tokyo, 194-0212, Japan
E-mail address: n-kameyama@salesio-sp.ac.jp
SCHOOL OF INFORMATION ENVIRONMENT
TOKYO DENKI UNIVERSITY
CHIBA, 270-1382, JAPAN

E-mail address: koga@mail.dendai.ac.jp