EXTENSION GROUPS BETWEEN ATOMS AND CLASSIFICATION OF LOCALIZING SUBCATEGORIES

RYO KANDA

ABSTRACT. Gabriel showed that every localizing subcategory of the category of modules over a commutative noetherian ring is closed under injective envelopes. However, this does not necessarily hold for other locally noetherian Grothendieck categories, such as the category of graded modules over a noetherian graded ring or the category of right modules over a right noetherian ring. In this paper, for a locally noetherian Grothendieck category, we give a characterization of localizing subcategories closed under injective envelopes, based on a new concept: extension groups between atoms.

Key Words: Grothendieck category, Localizing subcategory, Atom spectrum, Extension group.

2010 Mathematics Subject Classification: Primary 18E15; Secondary 16D90, 16P40.

1. Localizing subcategories

Throughout this paper, let \mathcal{A} be a Grothendieck category.

Definition 1. A *localizing subcategory* of \mathcal{A} is a full subcategory of \mathcal{A} which is closed under subobjects, quotient objects, extensions, and arbitrary direct sums.

For a commutative noetherian ring R, Gabriel [1] gave a classification of localizing subcategories of the category Mod R of R-modules, and showed a property of them:

Theorem 2 ([1, Proposition VI.2.4]). Let R be a commutative noetherian ring. Then there is a bijection

{ localizing subcategories of Mod R } \cong { specialization-closed subsets of Spec R }

given by $\mathcal{X} \mapsto \bigcup_{M \in \mathcal{X}} \operatorname{Supp} M$. The inverse map is given by $\Phi \mapsto \{ M \in \operatorname{Mod} R \mid \operatorname{Supp} M \subset \Phi \}$.

Theorem 3 ([1, Proposition V.5.10]). Let R be a commutative noetherian ring. Then every localizing subcategory of Mod R is closed under injective envelopes.

Theorem 2 has been generalized to locally noetherian Grothendieck category \mathcal{A} in terms of the atom spectrum ASpec \mathcal{A} as Theorem 13.

On the other hand, Theorem 3 does not necessarily hold for a locally noetherian Grothendieck category. Even in the case of the module category Λ of a noncommutative artinian ring Λ , or in the case of the category GrMod A of Z-graded modules over a

This is not in final form. The detailed version of this paper will be submitted for publication elsewhere.

This work was supported by JSPS KAKENHI Grant Number JP16H06337 and Grant-in-Aid for JSPS Research Fellow 25.249.

commutative noetherian positively graded ring A, we can construct a localizing subcategory which is not closed under injective envelopes.

Example 4. Let k[x] be the polynomial ring in a single variable x over a field k. Define a localizing subcategory \mathcal{X} of GrMod k[x] by

$$\mathcal{X} = \{ M \in \operatorname{GrMod} k[x] \mid M_i = 0 \text{ for all } i \in \mathbb{Z}_{<0} \}.$$

Then the k[x]-module k[x] belongs to \mathcal{X} , but its injective envelope $E(k[x]) = k[x, x^{-1}]$ does not.

Example 5. Let Q be the quiver

 $1 \longrightarrow 2$,

and consider the path algebra kQ over a field k. Define a localizing subcategory $\mathcal Y$ of Mod kQ by

 $\mathcal{Y} = \{ M \in \operatorname{Mod} kQ \mid \operatorname{Hom}_{kQ}(M, E(S_1)) = 0 \},\$

where S_i is the simple right kQ-module corresponding to each vertex i = 1, 2. Then S_2 belongs to \mathcal{Y} , but its injective envelope $E(S_2)$ does not.

Note that the category $\operatorname{Mod} kQ$ is equivalent to the full subcategory

$$\{M \in \operatorname{GrMod} k[x] \mid M_i = 0 \text{ for all } i \notin \{1, 2\}\}$$

of $\operatorname{GrMod} k[x]$.

We will characterize localizing subcategories which are closed under injective envelopes in terms of atom spectrum.

2. Atom spectrum

In this section, we recall the definition of the atom spectrum of \mathcal{A} and related notions. The atom spectrum is defined by using monoform objects and an equivalence relation between them.

Definition 6.

- (1) A nonzero object H in \mathcal{A} is called *monoform* if for each nonzero subobject L of H, no nonzero subobject of H is isomorphic to a subobject of H/L.
- (2) For monoform objects H_1 and H_2 in \mathcal{A} , we say that H_1 is *atom-equivalent* to H_2 if there exists a nonzero subobject of H_1 which is isomorphic to a subobject of H_2 .

The following results are fundamental.

Proposition 7 ([3, section 2]).

- (1) Every nonzero subobject of a monoform object is monoform.
- (2) Every monoform object H is uniform, that is, every nonzero subobject of H is essential.
- (3) Every nonzero noetherian object has a monoform subobject. If A is a locally noetherian Grothendieck category, then every nonzero object has a monoform subobject.

The atom equivalence is in fact an equivalence relation between the monoform objects in \mathcal{A} .

Definition 8. The *atom spectrum* ASpec \mathcal{A} of a Grothendieck category \mathcal{A} is the quotient set of the set of monoform objects in \mathcal{A} by the atom equivalence. Each element of ASpec \mathcal{A} is called an *atom* in \mathcal{A} . For each monoform object H in \mathcal{A} , the equivalence class of H is denoted by \overline{H} .

The notion of atoms was originally introduced by Storrer [6] for module categories and generalized to arbitrary abelian categories in [3].

The next result shows that the atom spectrum of a Grothendieck category is a generalization of the prime spectrum of a commutative ring.

Proposition 9 ([6, p. 631]). Let R be a commutative ring. Then the map $\operatorname{Spec} R \to \operatorname{ASpec}(\operatorname{Mod} R)$ given by $\mathfrak{p} \mapsto \overline{R/\mathfrak{p}}$ is bijective.

We can generalize the notion of support in terms of atoms.

Definition 10. Let M be an object in \mathcal{A} . Define the subset ASupp M of ASpec \mathcal{A} by

ASupp $M = \{ \alpha \in A \text{Spec } \mathcal{A} \mid \alpha = \overline{H} \text{ for some monoform subquotient } H \text{ of } M \}.$

We call it the *atom support* of M.

Proposition 11. Let R be a commutative ring, and let M be an R-module. Then the bijection Spec $R \to \operatorname{ASpec}(\operatorname{Mod} R)$ in Proposition 9 induces a bijection Supp $M \to \operatorname{ASupp} M$.

For a locally noetherian Grothendieck category \mathcal{A} , the localizing subcategories of \mathcal{A} can be classified by the localizing subsets of ASpec \mathcal{A} .

Definition 12. A subset Φ of ASpec \mathcal{A} is called a *localizing subset* if there exists an object M in \mathcal{A} such that $\Phi = A$ Supp M.

Theorem 13 ([2, Theorem 3.8], [5, Corollary 4.3], and [3, Theorem 5.5]). Let \mathcal{A} be a locally noetherian Grothendieck category. Then there is a bijection

{ localizing subcategories of \mathcal{A} } $\xrightarrow{\sim}$ { localizing subsets of ASpec \mathcal{A} }

given by $\mathcal{X} \mapsto \operatorname{ASupp} \mathcal{X} := \bigcup_{M \in \mathcal{X}} \operatorname{ASupp} M$. The inverse map is given by $\Phi \mapsto \operatorname{ASupp}^{-1} \Phi$, where

 $\operatorname{ASupp}^{-1} \Phi := \{ M \in \mathcal{A} \mid \operatorname{ASupp} M \subset \Phi \}.$

3. Extension groups between atoms

In this section, we determine which localizing subcategories are closed under injective envelopes, in terms of extension groups between atoms.

Definition 14. Let \mathcal{A} be a Grothendieck category and $i \in \mathbb{Z}_{>0}$.

(1) For each $\alpha = \overline{H} \in \operatorname{ASpec} \mathcal{A}$ and each object M in \mathcal{A} , we define the abelian group $\operatorname{Ext}^{i}_{\mathcal{A}}(\alpha, M)$ by

$$\operatorname{Ext}^i_{\mathcal{A}}(\alpha,M) = \varinjlim_{0 \neq H' \subset H} \operatorname{Ext}^i_{\mathcal{A}}(H',M),$$

where H' runs over all nonzero subobjects of H. $\operatorname{Ext}^{0}_{\mathcal{A}}(\alpha, M)$ is also denoted by $\operatorname{Hom}_{\mathcal{A}}(\alpha, M)$.

(2) For each $\alpha = \overline{H}, \beta = \overline{L} \in \operatorname{ASpec} \mathcal{A}$, we define the abelian group $\operatorname{Ext}^{i}_{\mathcal{A}}(\alpha, \beta)$ by

$$\operatorname{Ext}_{\mathcal{A}}^{i}(\alpha,\beta) = \varprojlim_{0 \neq L' \subset L} \operatorname{Ext}_{\mathcal{A}}^{i}(\alpha,L'),$$

where L' runs over all nonzero subobjects of L. $\operatorname{Ext}^{0}_{\mathcal{A}}(\alpha,\beta)$ is also denoted by $\operatorname{Hom}_{\mathcal{A}}(\alpha,\beta)$.

(3) For each $\alpha \in \operatorname{ASpec} \mathcal{A}$, we define the *residue field* $k(\alpha)$ of α by $k(\alpha) = \operatorname{Hom}_{\mathcal{A}}(\alpha, \alpha)$.

Proposition 15. Let R be a commutative noetherian ring, $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec} R$, and let $\alpha, \beta \in \operatorname{ASpec}(\operatorname{Mod} R)$ be the atoms corresponding to $\mathfrak{p}, \mathfrak{q}$ by the bijection $\operatorname{Spec} R \to \operatorname{ASpec}(\operatorname{Mod} R)$ in Proposition 9, respectively.

- (1) The functor $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(\alpha, -)$: Mod $\mathbb{Z} \to \operatorname{Mod} \mathbb{Z}$ is isomorphic to $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(k(\mathfrak{p}), (-)_{\mathfrak{p}}),$ where $k(\mathfrak{p})$ is the residue field of \mathfrak{p} .
- (2) $\operatorname{Ext}_{R}^{i}(\alpha,\beta) = 0$ whenever $\alpha \neq \beta$. $\operatorname{Ext}_{R}^{i}(\alpha,\alpha) \cong \operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(k(\mathfrak{p}),k(\mathfrak{p}))$ as an abelian group.
- (3) $k(\alpha) \cong k(\mathfrak{p})$ as a field.

For a Grothendieck category \mathcal{A} , the extension group $\operatorname{Ext}^{i}_{\mathcal{A}}(\alpha, M)$ between $\alpha \in \operatorname{ASpec} \mathcal{A}$ and $M \in \mathcal{A}$ has a structure of right $k(\alpha)$ -module ([4, Theorem 4.7 (2)]) and $k(\alpha)$ is a skew field. We showed in [4] that its dimension is the corresponding Bass number.

Theorem 16 ([4, Theorem 5.3]). Let \mathcal{A} be a locally noetherian Grothendieck category, $\alpha \in \operatorname{ASpec} \mathcal{A}$, and let M be an object in \mathcal{A} . For each $i \in \mathbb{Z}_{\geq 0}$, we have the equation

$$\mu_i(\alpha, M) = \dim_{k(\alpha)} \operatorname{Ext}^i_{\mathcal{A}}(\alpha, M),$$

where $\mu_i(\alpha, M)$ is the *i*-th Bass number of M with respect to α .

It turns out that the homomorphism space between distinct atoms is trivial.

Proposition 17. Let \mathcal{A} be a Grothendieck category and $\alpha, \beta \in \operatorname{ASpec} \mathcal{A}$. Then $\operatorname{Hom}_{\mathcal{A}}(\alpha, \beta) = 0$ whenever $\alpha \neq \beta$.

Therefore the first nontrivial data between distinct atoms is the first extension group, and it leads us to the characterization of the localizing subcategories closed under injective envelopes.

Theorem 18. Let \mathcal{A} be a locally noetherian Grothendieck category. Then a localizing subcategory \mathcal{X} of \mathcal{A} is closed under injective envelopes if and only if $\Phi := \operatorname{ASupp} \mathcal{X}$ satisfies the following condition: if $\alpha \in \operatorname{ASpec} \mathcal{A}$ and $\beta \in \Phi$ satisfy $\operatorname{Ext}^{1}_{\mathcal{A}}(\alpha, \beta) \neq 0$, then $\alpha \in \Phi$.

Example 19. In Example 4,

$$\operatorname{ASpec}(\operatorname{GrMod} k[x]) = \{\overline{k[x]}\} \cup \{\overline{k(i)} \mid i \in \mathbb{Z}\},\$$

where k(i) is the degree shift of k. The extension group $\operatorname{Ext}^1(\alpha, \beta)$ between atoms α, β is nonzero if and only if $(\alpha, \beta) = (\overline{k(i)}, \overline{k(i-1)})$ for some $i \in \mathbb{Z}$. The localizing subcategory \mathcal{X} of GrMod k[x] corresponds to

ASupp
$$\mathcal{X} = \{\overline{k[x]}\} \cup \{\overline{k(i)} \mid i \in \mathbb{Z}_{\leq 0}\}.$$

Note that $\operatorname{Ext}^{1}(\overline{k(1)}, \overline{k}) = k$ while $\overline{k(1)} \notin \operatorname{ASupp} \mathcal{X}$ and $\overline{k} \in \operatorname{ASupp} \mathcal{X}$.

Example 20. In Example 5,

$$\operatorname{ASpec}(\operatorname{Mod} kQ) = \{\overline{S_1}, \overline{S_2}\}$$

and the extension group $\operatorname{Ext}^{1}(\alpha, \beta)$ between atoms α, β is nonzero if and only if $(\alpha, \beta) = (\overline{S_1}, \overline{S_2})$. The localizing subcategory \mathcal{Y} of Mod kQ corresponds to

$$\operatorname{ASupp} \mathcal{Y} = \{\overline{S_2}\}$$

Note that $\operatorname{Ext}^1(\overline{S_1}, \overline{S_2}) = k$ while $\overline{S_1} \notin \operatorname{ASupp} \mathcal{Y}$ and $\overline{S_2} \in \operatorname{ASupp} \mathcal{Y}$.

Acknowledgement. The author would like to express his deep gratitude to Osamu Iyama for his elaborated guidance.

References

- [1] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- [2] I. Herzog, The Ziegler spectrum of a locally coherent Grothendieck category, Proc. London Math. Soc.
 (3) 74 (1997), no. 3, 503–558.
- [3] R. Kanda, Classifying Serre subcategories via atom spectrum, Adv. Math. 231 (2012), no. 3–4, 1572– 1588.
- [4] R. Kanda, Extension groups between atoms and objects in locally noetherian Grothendieck category, J. Algebra 422 (2015), 53–77.
- [5] H. Krause, The spectrum of a locally coherent category, J. Pure Appl. Algebra 114 (1997), no. 3, 259–271.
- [6] H. H. Storrer, On Goldman's primary decomposition, Lectures on rings and modules (Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. I), pp. 617–661, Lecture Notes in Math., Vol. 246, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

DEPARTMENT OF MATHEMATICS GRADUATE SCHOOL OF SCIENCE OSAKA UNIVERSITY TOYONAKA, OSAKA, 560-0043, JAPAN *E-mail address*: ryo.kanda.math@gmail.com