ALGEBRAS SHARING THE SAME POSET OF SUPPORT τ -TILTING MODULES WITH TREE QUIVER ALGBERAS

TAKUMA AIHARA AND RYOICHI KASE

ABSTRACT. This report is an announcement of our result in [3]. We give a generalization of Happel-Unger's result. More precisely, we characterize algebras whose support τ -tilting posets coincide with that of a tree quiver algebra.

1. Preliminary

In this section, we recall the definition and their fundamental results of support τ -tilting modules. Throughout this report, let $\Lambda = kQ/I$ be a finite dimensional algebra over an algebraically closed field k, where Q is a finite quiver and I an admissible ideal of kQ. We denote by mod Λ the category of finite dimensional right Λ -modules, and a module is always an object of this category. For a module M, |M| denotes the number of pairwise non-isomorphic indecomposable direct summands of M.

1.1. Support τ -tilting modules. The notion of support τ -tilting modules was introduced by Adachi-Iyama-Reiten as a generalization of that of tilting modules [2].

We denote by $\tau = \tau_{\Lambda}$ the Auslander-Reiten translation.

Definition 1. (1) A module M is said to be τ -rigid if Hom_A $(M, \tau M) = 0$.

- (2) A τ -tilting module M is defined to be τ -rigid with $|M| = |\Lambda|$.
- (3) We say that a module M is support τ -tilting if there is an idempotent e of Λ such that M is a τ -tilting $\Lambda/(e)$ -module.

Proposition 2. [2] We have the following.

- (1) For any support τ -tilting module M, there exists a unique idempotent e of Λ such that M is a τ -tilting $\Lambda/(e)$ -module.
- (2) Every support τ -tilting module is τ -rigid.
- (3) Any τ -rigid module is a direct summand of some support τ -tilting module.
- (4) (Support) tilting modules are (support) τ -tilting.
- (5) If Λ is hereditary, then M is a (support) τ -tilting module if and only if it is a (support) tilting one.

We denote by $s\tau$ -tilt Λ (resp. s-tilt Λ) the set of (isomorphism classes of) basic support τ -tilting modules (resp. support tilting modules).

The detailed version of this paper has been submitted for publication elsewhere.

1.2. Support τ -tilting posets. s τ -tilt Λ has a poset structure as follows (see [2]):

$$M \ge M' \stackrel{\text{def}}{\Leftrightarrow} \mathsf{fac}M \supset \mathsf{fac}M',$$

where $\operatorname{fac} M := \{ X \in \operatorname{mod} \Lambda \mid M^{\oplus r} \xrightarrow{\exists} X \text{ for some } r > 0 \}.$

Theorem 3. [2]

- (1) The Hasse quiver $\mathcal{H}(\mathsf{s}\tau\mathsf{-tilt}\Lambda)$ of $\mathsf{s}\tau\mathsf{-tilt}\Lambda$ is $|\Lambda|$ -regular.
- (2) If $\mathcal{H}(\mathsf{s}\tau\mathsf{-tilt}\Lambda)$ has a finite connected component \mathcal{C} , then we have $\mathcal{H}(\mathsf{s}\tau\mathsf{-tilt}\Lambda) = \mathcal{C}$.

We give an example of a support τ -tilting poset. Please refer to [1, 5], etc, for more examples.

Example 4. Let $Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$. For a pair (i, j) of $\{1, 2, 3\}$ with i > j, we denote by $X_j^i := e_i \Lambda / e_i \Lambda e_j \Lambda$. Also we set $X^i = e_i \Lambda$. Then $s\tau$ -tilt Λ is given by the following.

2. HAPPEL-UNGER'S RESULT

Let Q be a finite connected acyclic quiver. We define a decorated quiver $Q_{\rm dec}$ of Q as follows:

- (i) Vertices of Q_{dec} are those of Q.
- (ii) We draw an arrow $i \to j$ on Q_{dec} if there is a unique arrow from i to j on Q.

(iii) We draw a decorated arrow $i \stackrel{*}{\to} j$ on Q_{dec} if there are at least two arrows from i to j on Q.

Note that we distinguish ordinary arrows \rightarrow from decorated arrows $\stackrel{*}{\rightarrow}$. Happel and Unger gave us the following result.

Theorem 5. [4, Theorem 6.4] Let Q and Q' be finite connected acyclic quivers. If there is a poset isomorphism

s-tilt
$$kQ \simeq$$
 s-tilt kQ'

then Q_{dec} is isomorphic to Q'_{dec} .

The theorem above says that we can reconstruct tree quiver algebras from their posets of support $(\tau$ -)tilting modules.

Example 6. Let $Q^{(m)}$ be a quiver with vertices 1, 2 and m arrows from 1 to 2. Then we have

$$Q_{\text{dec}}^{(m)} = \begin{cases} 1 \to 2 & \text{if } m = 1\\ 1 \stackrel{*}{\to} 2 & \text{if } m \ge 2 \end{cases}$$

Denote by Λ_m the path algebra of $Q^{(m)}$. Then Theorem 5 implies that

s-tilt $\Lambda_1 \not\simeq$ s-tilt $\Lambda_m \ (m \ge 2)$.

In fact, the Hasse quiver of the poset of support tilting modules of Λ_m is given by the following:

3. Main result

A motive of our work is to generalize Happel-Unger's result. We fix a tree quiver $\overrightarrow{\mathbb{T}}$ and its path algebra $\Gamma = k \overrightarrow{\mathbb{T}}$. As a main result of this report, we chracterize algebras whose support τ -tilting posets are isomorphic to $\mathbf{s}\tau$ -tilt Γ .

Theorem 7. [3, Corollary 3.11] Let Q be a finite quiver, I an admissible ideal of kQ and $\Lambda = kQ$. Then the following are equivalent.

- (i) $s\tau$ -tilt $\Lambda \simeq s\tau$ -tilt Γ .
- (ii) There is a quiver isomorphism $\sigma: Q \setminus \{\text{loops}\} \xrightarrow{\sim} \overrightarrow{\mathbb{T}}$ satisfying the following: (a) $e_i \Lambda e_j = 0 \Leftrightarrow e_{\sigma(i)} \Gamma e_{\sigma(j)} = 0.$
 - (b) If α is an arrow from *i* to *j* with $i \neq j$, then $e_i \Lambda \alpha = e_i \Lambda e_j = \alpha \Lambda e_j$.

In particular, there are infinitely many algebras (up to Morita equivalence) satisfying $s\tau$ -tilt $\Lambda \simeq s\tau$ -tilt Γ .

Remark 8. Under the condition (ii) of Theorem 7, there is an algebra epimorphism $\Lambda \twoheadrightarrow \Gamma$, and the tensor functor $-\otimes_{\Lambda} \Gamma$ induces a poset isomorphism

 $s\tau$ -tilt $\Lambda \simeq s\tau$ -tilt Γ .

Example 9. (1) Let Q be the following quiver:

 $\bigcap_{1 \stackrel{\epsilon_{2}}{\longrightarrow} 2 \stackrel{\epsilon_{3}}{\longrightarrow} 3}^{\epsilon_{1}}$

Let $m \in \mathbb{Z}_{\geq 1}$ and I_m an ideal of kQ generated by

 $\epsilon_1^m, \ \epsilon_2^m, \ \epsilon_3^m, \ \epsilon_1 \alpha, \ \alpha \epsilon_2, \ \epsilon_2 \beta, \ \beta \epsilon_3.$

Set $\Lambda_m := kQ/I_m$. Then we have a poset isomorphism

$$s\tau$$
-tilt $\Lambda_m \simeq s\tau$ -tilt $k(1 \rightarrow 2 \rightarrow 3)$.

(2) Let $Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$, $I = (\alpha\beta)$ and $\Lambda = kQ/I$. Then $s\tau$ -tilt Λ is not isomorphic to $s\tau$ -tilt $k(1 \to 2 \to 3)$. (In this case, there are 12 elements in $s\tau$ -tilt Λ .)

References

- [1] T. Adachi, The classification of τ -tilting modules over Nakayama algebras, J. Algebra **452** (2014), 227–262.
- [2] T. Adachi, O. Iyama, I. Reiten, *τ*-tilting theory, Compos. Math. 150, no. 3 (2014), 415–452.
- [3] T. Aihara, R. Kase, Algebras sharing the same support τ -tilting poset with tree quiver algebras, arXiv:1609.01880, https://arxiv.org/abs/1609.01880
- [4] D. Happel, L. Unger, Reconstruction of path algebras from their posets of tilting modules, Trans. Amer. Math. Soc. 361, no. 7 (2009), 3633–3660.
- [5] Y. Mizuno, Classifying τ-tilting modules over preprojective algebras of Dynkin type, Math. Z. 277, no. 3-4 (2014), 665–690.

TAKUMA AIHARA DEPARTMENT OF MATHEMATICS TOKYO GAKUGEI UNIVERSITY 4-1-1 NUKUIKITA-MACHI, KOGANEI, TOKYO 184-8501 JAPAN *E-mail address*: aihara@u-gakugei.ac.jp

RYOICHI KASE FACULTY OF SCIENCE NARA WOMEN'S UNIVERSITY KITAUOYANISHI-MACHI, NARA, NARA, 630-8506 JAPAN *E-mail address*: r-kase@cc.nara-wu.ac.jp