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Abstract. Let Q be a finite acyclic quiver and Π be the preprojective algebra of Q.
We study the stable category of a factor algebra of Π associated with an element w of
the Coxeter group of Q. We see that the category has a silting object associated with
each reduced expression of w. Under certain assumptions on a reduced expression, we
see that the silting object is a tilting object.

1. Introduction

2-Calabi-Yau triangulated categories (2-CY, for short) and their cluster tilting objects
have been studied extensively. For a given element w of the Coxeter group of a quiver,
Buan-Iyama-Reiten-Scott constructed an Iwanaga-Gorenstein algebra Π(w) and studied
the stable category SubΠ(w), where SubΠ(w) is the category of submodules of free Π(w)-
modules [3]. They showed that SubΠ(w) is a 2-CY triangulated category and constructed
a cluster tilting object associated with each reduced expression of w.

There are other classes of 2-CY triangulated categories. Let A be a finite dimensional
algebra which has a finite global dimension. Amiot introduced the generalized cluster
category C(A) of A [1] and showed that if C(A) is Hom-finite, then C(A) is a 2-CY
triangulated category and has cluster tilting objects.

In [2], Amiot-Reiten-Todorov studied the relationship between 2-CY triangulated cat-
egories SubΠ(w) and C(A). For any element w of the Coxeter group and a reduced
expression w of w, the authors constructed a finite dimensional algebra A(w) and they
showed that there exists a triangle equivalence C(A(w)) ≃ SubΠ(w).

The first aim of this paper is to introduce a graded analogue of an existence of cluster
tilting objects of SubΠ(w). Let w be an element of the Coxeter group of a quiver. We
consider the stable category SubZΠ(w) of a Frobenius category SubZΠ(w), which is a
graded analogue of SubΠ(w). We show that the category SubZΠ(w) has a silting object
associated with each reduced expression of w. Under certain assumptions on a reduced
expression of w, we show that the silting object is a tilting object. Finally, we compare the
equivalence obtained by the tilting object and the equivalence of Amiot-Reiten-Todorov.

Notation. Through out this paper, let K be an algebraically closed field. All categories
are K-linear categories. By a module, we mean a left module. For a (Z-graded) ring A, we
denote by modA (respectively, modZA) the category of finitely generated (respectively, Z-
graded) A-modules and by projA (respectively, projZA) the category of finitely generated
(respectively, Z-graded) projective A-modules. For X ∈ modA, we denote by addX the
full subcategory of modA whose objects are direct summands of finite direct sums of
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copies of X. For a triangulated category T , we denote by [1] the shift functor of T . For
two arrows α, β of a quiver such that the target of α is the source of β, we denote by αβ
the composition of α and β.

2. Preliminaries

In this section, we give definitions used in this paper and recall some result of [3].
Throughout this section, let Q = (Q0, Q1) be a finite acyclic quiver, where Q0 is the set of
vertices and Q1 is the set of arrows. The double quiver Q is a quiver obtained from Q by
adding an arrow α∗ : v → u for each arrow α : u → v of Q. We define the preprojective
algebra of Q and introduce a Z-grading of it.

Definition 1. Let Q be a finite acyclic quiver. We define the preprojective algebra Π of
Q by

Π := KQ/⟨
∑
α∈Q1

(αα∗ − α∗α)⟩.

We regard the path algebra KQ as a Z-graded algebra by the following map deg: for
each β ∈ Q1, let

deg(β) =

{
1 β = α∗, α ∈ Q1,

0 β = α, α ∈ Q1.

Since the element
∑

α∈Q1
(αα∗ − α∗α) of KQ is homogeneous of degree one, the grading

of KQ naturally gives a grading on the preprojective algebra Π =
⊕

i≥0Πi.
Let Q and Q′ be finite acyclic quivers and Π and Π′ be the preprojective algebras of Q

and Q′, respectively. It is easy to see that if the underlying graph of Q corresponds with
that of Q′, then Π is isomorphic to Π′ as algebras, but not isomorphic to Π′ as Z-graded
algebras, in general.

Next we define the Coxeter group of a quiver Q.

Definition 2. (1) The Coxeter group WQ of Q is the group generated by the set
{ su | u ∈ Q0 } with the following three relations: s2u = 1, susv = susv if there exist
no arrows between u and v, and susvsu = svsusv if there exists exactly one arrow
between u and v.

(2) Let w ∈ WQ and w = su1su2 · · · sul
be an expression of w. w is said to be reduced

if l is the smallest among expressions of w.
(3) For a reduced expression w = su1su2 . . . sul

of w, put Supp(w) := {u1, . . . , ul}.
Note that, Supp(w) is independent of the choice of a reduced expression of w.

Next we define an algebra Π(w), which is a factor algebra of Π. We first define a two-
sided ideal of Π associated with an element w of WQ. For each vertex u ∈ Q0, we define
a two-sided ideal Iu of Π by

Iu = Π(1− eu)Π,
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where eu is the idempotent of Π for u. Let w ∈ WQ and w = su1su2 . . . sul
be a reduced

expression of w. We define a two-sided ideal I(w) of Π by

I(w) := Iu1Iu2 · · · Iul
.

By [3, Theorem III. 1.9], I(w) is independent of the choice of a reduced expression of w.
Therefore we define an algebra Π(w) for each w ∈ WQ by

Π(w) := Π/I(w).

It is easy to see that Π(w) is a finite dimensional algebra for each w ∈ WQ. Note that
Π(w) is a Z-graded algebra, since each Iu and I(w) are homogeneous ideals of Π.

We recall one property of Π(w). A finite dimensional algebra A is said to be Iwanaga-
Gorenstein of dimension at most one if inj.dim(AA) ≤ 1.

Proposition 3. [3] For any element w ∈ WQ, the algebra Π(w) is Iwanaga-Gorenstein
of dimension at most one.

By Proposition 3, we have two Frobenius categories SubΠ(w) and SubZΠ(w): the
full subcategory of modΠ(w) (respectively, modZΠ(w)) consisting of submodules of free
(respectively, graded free) Π(w)-modules of finite rank, where the projective-injective
objects are projΠ(w) (respectively, projZΠ(w)). We denote by SubΠ(w) and SubZΠ(w)
the stable categories of SubΠ(w) and SubZΠ(w), which are triangulated. In the next
section, we see that the triangulated category SubZΠ(w) has a silting object.

3. Silting and tilting objects of SubZΠ(w)

In this section, we see that the triangulated category SubZΠ(w) has a silting object for
each reduced expression of w ∈ WQ. First, we recall the definition of silting and tilting
objects for triangulated categories. Let T be a triangulated category. For an object X
of T , we denote by thickX the smallest triangulated full subcategory of T containing X
and closed under direct summands.

Definition 4. Let T be a triangulated category.

(1) An object X of T is called a silting object if HomT (X,X[i]) = 0 for any 0 < i and
thickX = T .

(2) An object X of T is called a tilting object if X is a silting object of T and
HomT (X,X[i]) = 0 for any i < 0.

We recall tilting theorem for triangulated categories. An additive category C is called
Krull-Schmidt if each object of C is a finite direct sum of objects such that whose en-
domorphism algebras are local. For an algebra A, we denote by Kb(projA) the bounded
homotopy category of finitely generated projective A-modules.

Theorem 5. [4, (4.3)] Let T be the stable category of a Frobenius category, and assume
that T is Hom-finite and Krull-Schmidt. If there exists a tilting object X of T , then we
have a triangle equivalence T ≃ Kb(proj EndT (X)).

Note that our triangulated category SubZΠ(w) satisfies the assumption of Theorem 5.
Therefore by constructing a tilting object of SubZΠ(w), we can realize this triangulated
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category as the derived category of a finite dimensional algebra. We first see that the
category SubZΠ(w) has a silting object.

Let w = su1su2 · · · sul
be a reduced expression of w, and put

M(w)i = (Π/I(su1su2 · · · sui
))eui

, M(w) =
l⊕

i=1

M(w)i.

We have the following theorem.

Theorem 6. [6] Let w ∈ WQ. For any reduced expression w of w, the object M(w) is a

silting object of SubZΠ(w).

Next we give a sufficient condition on w such that the silting object M(w) is a tilting
object. Let w = su1su2 · · · sul

be a reduced expression of w. For any u ∈ Supp(w), put

pu := max{1 ≤ j ≤ l | uj = u}, mu := min{1 ≤ j ≤ l | uj = u}.

Definition 7. Let w = su1su2 · · · sul
be a reduced expression of w.

(1) We say that w is c-ending if for any u, v ∈ Supp(w), pu < pv holds whenever there
exists an arrow from u to v in Q.

(2) We say that w is c-starting if for any u, v ∈ Supp(w), mu < mv holds whenever
there exists an arrow from u to v in Q.

Example 8. Let Q =
1

2 3
��~~
~~

//
��@

@@
@

. An expression w = s3s2s3s1s2s3 is a c-ending. Actually,

p1 = 4, p2 = 5, and p3 = 6. An expression w′ = s1s2s1s3 is c-starting. Actually, p1 = 1,
p2 = 2 and p3 = 4.

Then we can show the following theorem. For a finite dimensional algebra A, we denote
by Db(A) the bounded derived category of the finitely generated A-modules.

Theorem 9. [6] Let w be a reduced expression of w. Put T = SubZΠ(w) and M = M(w).
Assume that w is c-ending or c-starting. Then we have the following.

(a) M is a tilting object of T .
(b) The global dimension of EndT (M) is at most two.
(c) We have the following triangle equivalence

T ≃ Db(EndT (M)).

Note that Theorem 9 (c) follows from Theorem 5 and Theorem 9 (b). There exists a
more general condition on w such that M(w) is a tilting object, see [6].

4. The relationship with the result of Amiot-Reiten-Todorov

In this section, we compare the equivalence obtained by the tilting object and the
equivalence of Amiot-Reiten-Todorov. We first recall the cluster categories of finite di-
mensional algebras which are introduced by Amiot [1]. Let A be a finite dimensional
algebra of global dimension at most two. We denote by S = − ⊗L

A DA a Serre functor
on Db(A). Put S2 = S ◦ [−2]. A cluster category C(A) of A is the triangulated hull of
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the orbit category Db(A)/S2 in the sense of Keller [5]. We have the composite of triangle
functors

πA : Db(A) → Db(A)/S2 → C(A).

Let w be a reduced expression of w ∈ WQ. Put T = SubZΠ(w) and A = EndT (M(w)).
We denote by ei the idempotent of A associated with M(w)i for each 1 ≤ i ≤ l. Let
eF =

∑
j∈F ej, where F = {pu | u ∈ Supp(w)}. Put

A = A/AeFA.

Amiot-Reiten-Todorov showed the following theorem.

Theorem 10. [2] Let w ∈ WQ and w be a reduced expression of w. If w is c-ending,
then we have the following.

(a) The global dimension of A is at most two.
(b) There exists a triangle equivalence G : C(A) → SubΠ(w).

Then we have the following theorem.

Theorem 11. [6] Let w ∈ WQ and w be a reduced expression of w. If w is c-ending,

then EndZT (M(w)) = A holds and we have the following commutative diagram up to
isomorphism of functors

Db(A)
≃ //

πA

��

SubZΠ(w)

Forget

��
C(A)

G // SubΠ(w).

Finally, we give an example. For a graded module X and i ∈ Z, we define the graded
module X(i) by X(i)j := Xi+j.

Example 12. Let Q =
1

2 3
��~~
~~

//
��@

@@
@

. An expression w = s3s2s3s1s2s3 is a c-ending. Let w

be an element of WQ which has a reduced expression w. Put T = SubZΠ(w) and M i :=
M(w)i. It is easy to see that for any u ∈ Supp(w), Mpu ≃ Π(w)eu holds. Therefore we
haveM(w) ≃ M1⊕M2⊕M3 in T . By a direct calculation, we see that the endomorphism
algebra EndT (M(w)) is given by the following quiver with relations

∆ = • •boo •aoo ab = 0.

This algebra is derived equivalent to the path algebra K∆. Therefore by Theorem 9, T
is triangle equivalent to the derived category of the path algebra K∆. We can describe
the Auslander-Reiten quiver of T as follows:

S2· · · S2[−1](1) S2[1]

M3[1](−1)

M2

M3

M2[−1](1)

M2[1]

M1

M2(1)

M3[1]

S2(1)

M2[−1](2)

M3(1)

· · ·

AA������

��:
::

::
:

��6
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DD�����

AA������

��:
::

::

��:
::

::
:

AA������

DD�����

��6
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66

��6
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DD�����

AA������

��:
::

::
:

��:
::

::
:

AA������

AA������

��:
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::
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��6
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DD�����
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where S2 is a simple Π(w)-module associated with a vertex 2 ∈ Q0.

References

[1] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst.
Fourier (Grenoble) 59 (2009), no. 6, 2525-2590.

[2] C. Amiot, I. Reiten, G. Todorov, The ubiquity of the generalized cluster categories, Adv. Math. 226
(2011), no. 4, 3813-3849.

[3] A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent
groups, Compos. Math. 145 (2009), no. 4, 1035-1079.

[4] B. Keller, Deriving DG categories, Ann. Sci. Ècole Norm. Sup. (4) 27 (1994), no. 1, 63-102.
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