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VIA GROTHENDIECK GROUPS
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Abstract. Classification problems of subcategories have been deeply considered so far.
In this article, we discuss classifying dense resolving subcategories of exact categories
via their Grothendieck groups. This study is motivated by the classification of dense
triangulated subcategories of triangulated categories due to Thomason.

1. Introduction

Classification of subcategories means for a category C, finding a bijection

{· · · subcategories of C} // S,oo

where S is a set which is easier to understand. Classification of subcategories is an
important approach to understand the category C and has been studied in various areas
of mathematics, for example: stable homotopy theory, commutative/nonncommutative
ring theory, algebraic geometry, modular representation theory.

Let C be an additive category, X an additive full subcategory. We say that X is an
additively closed subcategory of C if it is closed under taking direct summands, and that
X is a dense subcategory of C if any object of C is a direct summand of some object of
X . We can easily check that X is additively closed if and only if X = addX and that X
is dense if and only if C = addX . Here, we denote by addX the additive closure of X ,
namely, addX is a subcategory of C consisting of objects which are direct summands of
finite direct sums of objects of X . For this reason, to classify additive subcategories, it
suffice to classify additively closed ones and dense ones. Following theorem is an example
of classification of dense subcategories which is due to Thomason [5].

Theorem 1 (Thomason). Let T be an essentially small triangulated category. Then there
is a one to one correspondence

{dense triangulated subcategories of T }
f // {subgroups of K0(T )}
g

oo .

Motivated by this theorem, we discuss classifying dense resolving subcategories of exact
categories.

2. classification of dense resolving subcategories

In this section, we give our main result and several corollaries.

The detailed version [4] of this article will be submitted for publication elsewhere.
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Let us begin with fixing our conventions. Throughout this article, E denotes an exact
category. We always assume that all categories are essentially small, and that all subcat-
egories are full and additive. For a left noetherian ring A, denote by modA the abelian
category of finitely generated left A-modules, and by projA its full subcategory consisting
of finitely generated projective left A-modules.

Next we recall the definition of the Grothendieck groups of an exact category and a
triangulated category.

Definition 2. (1) We define the Grothendieck group of an exact category E by

K0(E) :=
⊕

X∈E/∼= Z ·X
⟨X − Y + Z | X ↣ Y ↠ Z is a short exact sequence of E⟩

.

(2) We define the Grothendieck group of a triangulated category T by

K0(T ) :=

⊕
X∈T /∼= Z ·X

⟨X − Y + Z | X → Y → Z → ΣX is an exact triangle of T ⟩
.

For an object X, denote by [X] the corresponding element in the Grothendieck group.

Let us recall the definition of generators of an exact category.

Definition 3. Let G be a class of objects of E . We call G a generator of E if for any
object A ∈ E , there is a short exact sequence

A′ ↣ G ↠ A

in E with G ∈ G.

Example 4. (1) Clearly, E is a generator of E
(2) Denote by proj E the subcategory of E consisting of projective objects. Then by

definition, proj E is a generator of E if and only if E has enough projective objects.

Finally, we introduce the notion of G-resolving subcategories of an exact category.

Definition 5. Let X be a subcategory of E and G a generator of E . We say that X is a
G-resolving subcategory of E if:

(1) X is closed under kernels of admissible epimorphisms,
(2) X is closed under extensions, and
(3) X contains G.

The following theorem is our main result in this article.

Theorem 6. Let E be an essentially small exact category with a generator G. Then there
are bijections{

dense G-resolving subcategories
of E

}
f

⇄
g

{
subgroups of K0(E)

containing ⟨[G] | G ∈ G⟩

}
,

where f and g are given by f(X ) := ⟨[X] | X ∈ X⟩ and g(H) := {X ∈ E | [X] ∈ H},
respectively.
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Sketch of proof. Let H be a subgroup of K0(E) containing ⟨[G] | G ∈ G⟩. Clearly, g(H)
contains G. For a short exact sequence A ↣ B ↠ C, one has [A] − [B] + [C] = 0 ∈ H.
This shows that g(H) is a G-resolving subcategory of E . Moreover, for A ∈ G, take a
short exact sequence A′ ↣ G ↠ A in E with G ∈ G. Then we have [A⊕A′] = [A]+[A′] =
[G] ∈ ⟨[G] | G ∈ G⟩ ⊆ H. Thus, A is a direct summand of A⊕A′ which belongs to g(H).
Consequently, g(H) is a dense G-resolving subcategory.

We give an outline of the proof of gf = id. Fix a dense G-resolving subcategory X of
E . Define an equivalence relation ∼ on E/ ∼= as follows:

A ∼ A′ :⇔ ∃X,X ′ ∈ X such that A⊕X ∼= A′ ⊕X ′.

Denote by ⟨E⟩X the quotient set of E/ ∼= by ∼. For A ∈ E , ⟨A⟩ shall mean the class of A
in ⟨E⟩X . Then we can show:

(1) A ∼ 0 ⇔ A ∈ X .
(2) ⟨E⟩X is an abelian group by ⟨A⟩+ ⟨B⟩ := ⟨A⊕B⟩.
(3) φ : K0(E) → ⟨E⟩X , [A] 7→ ⟨A⟩ is a well-defined homomorphism of abelian groups.
(4) Kerφ = f(X ).

Here, we use the assumption ‘X is a dense G-resolving’ to show these statement.
Consequently, we obtain:

A ∈ X ⇔ [A] ∈ f(X ) ⇔ A ∈ gf(X ).

First equivalence is due to (1), (4) and the second one is by definition. □
For the lest of this article, we give some corollaries and applications of our main theorem.
To begin with, we state the following lemma which is well-known for the case where E

is abelian.

Lemma 7. Let E be a weakly idempotent complete exact category. Then the natural
functor E → Db(E) induces an isomorphism

K0(E) ∼= K0(D
b(E))

Combination of Theorem 1 and Theorem 6 shows the following corollary.

Corollary 8. Assume that E is a weakly idempotent complete exact category with a gen-
erator G. Then there are one-to-one correspondences among the following sets:

(1) {dense G-resolving subcategories of E}.
(2) {dense triangulated subcategories of T containing G}.
(3) {subgroups of K0(E) containing ⟨[G] | G ∈ G⟩}.

Remark 9. Let X be a dense subcategory of E which is closed under kernels of admissible
epimorphisms and extensions. Then we can easily check that it is automatically closed
under cokernels of admissible monomorphisms. Thus, if we take G = proj E , the above
corollary can be considered as the dense version of the following theorem due to Krause
and Stevenson [4]:

Theorem 10 (Krause-Stevenson). Let E be an exact category with enough projective
objects. Then there is one-to-one correspondence between:

(1) {thick subcategories of E containing proj E}, and
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(2) {thick subcategories of Db(E) containing proj E}.

Next, we apply our main theorem for module categories of Iwanaga-Gorenstein rings.
Let S be an Iwanaga-Gorenstein ring (i.e. S is noetherian on both sides and S is of

finite injective dimension as a left S-module and a right S-module). Let us give several
remarks about Iwanaga-Gorenstein rings (cf. [2, 6]).

Remark 11. (1) We say that a finitely generated left S-module X is maximal Cohen-
Macaulay if ExtiS(X,S) = 0 for all integers i > 0. CM(S) denotes the subcategory
of modS consisting of maximal Cohen-Macaulay S-modules. Then it is a Frobenius
category, and hence, its stable category CM(S) is triangulated.

(2) Natural inclusions CM(S) ↪→ modS ↪→ Db(modS) induce isomorphisms

K0(CM(S)) ∼= K0(modS) ∼= K0(D
b(modS)).

(3) Composition of the natural inclusion CM(S) ↪→ Db(modS) and the quotient functor
Db(modS) → Dsg(S) := Db(modS)/Kb(projS) induces a triangle equivalence

CM(S) ∼= Dsg(S).

From these remarks, we obtain the following corollary.

Corollary 12. Let S be an Iwanaga-Gorenstein ring. Then there are one-to-one corre-
spondences among the following sets:

(1) {dense resolving subcategories of CM(S)},
(2) {dense resolving subcategories of modS},
(3) {dense triangulated subcategories of Db(modS) containing projS},
(4) {dense triangulated subcategories of Dsg(S)},
(5) {dense triangulated subcategories of CM(S)}, and
(6) {subgroups of K0(modS) containing ⟨[P ] | P ∈ projS⟩}

3. Finiteness of the number of dense resolving subcategories

In this section, we discuss when mod A has only finitely many dense resolving sub-
categories.

First consider the case of finite dimensional algebra. Let A be a basic finite dimensional
algebra over a field k with a complete set {e1, . . . , en} of primitive orthogonal idempotents.
Denote by CA := (dimk eiAej)i,j=1,...,n the Cartan matrix of A. Then simple A-modules
{Si := Aei/ rad(Aei)}ni=1 forms a free basis of the Grothendieck group K0(modA), and
hence there is an isomorphism of abelian groups:

K0(modA) ∼= Z⊕n.

Furthermore, this isomorphism induces an isomorphism:

K0(modA)/⟨[P ] | P ∈ projA⟩ ∼= Coker(Z⊕n CA−−→ Z⊕n)

for details, see [1]. From this argument, we have the following corollary.

Corollary 13. Let A be a basic finite dimensional k-algebra. The following are equivalent:

(1) There are only finitely many dense resolving subcategories of modA.
(2) detCA ̸= 0.
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Next consider the case of simple singularities. Let k be an algebraically closed field
of characteristic 0. We say that a two dimensional commutative noetherian local ring
R := k[[x, y, z]]/(f) has a simple singularity if f is one of the following form:

(An) x2 + yn+1 + z2 (n ≥ 1),

(Dn) x2y + yn−1 + z2 (n ≥ 4),

(E6) x3 + y4 + z2,

(E7) x3 + xy3 + z2,

(E8) x3 + y5 + z2.

In this case the Grothendieck group K0(modR) is given as follows (see [6, Proposition
13.10]):

K0(modR) #{ dense resolv. subcat. of modR}
(An) Z⊕ Z/(n+ 1)Z the number of divisors of n+ 1

(Dn) (n = even) Z⊕ (Z/2Z)⊕2 5
(Dn) (n = odd) Z⊕ Z/4Z 3

(E6) Z⊕ Z/3Z 2
(E7) Z⊕ Z/2Z 2
(E8) Z 1

Here, Z appearing in K0(modR) is generated by [R]. Thus, our main theorem implies
that there are only finitely many dense resolving subcategories of modR for a two di-
mensional simple singularity R. Actually, the converse also holds true under some mild
assumptions.

Corollary 14. Let R be a 2-dimensional complete Gorenstein normal local ring with
algebraically closed residue field k of characteristic 0. The following are equivalent:

(1) There are only finitely many dense resolving subcategories of modR.
(2) There are only finitely many dense resolving subcategories of modR containing k.
(3) R has a simple singularity.

Finally, I give the complete set of dense resolving subcategories of modR for a simple
singularity of type (A1).

Example 15. Let R := k[[x, y, z]]/(x2 + y2 + z2) be a simple singularity of type (A1).
Then indecomposable maximal Cohen-Macaulay R-modules are R and I := (x+

√
−1y, z).

Then dense resolving subcategories of modR are:

• modR, and
• {M ∈ modR | Ω2M ∼= R⊕m ⊕ I⊕2n for ∃m,n ∈ Z≥0}.

Here we denote by Ω2M the second syzygy module of M .

Proof. From Corollary 12, there is a one-to-one correspondence between the set of dense
resolving subcategories of modR and the set of dense resolving subcategories of CM(R).
This correspondence assigns a dense resolving subcategory X of CM(R) to a dense resolv-
ing subcategory {M ∈ modR | Ω2M ∈ X} of modR. Therefore, it is enough to check
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that the dense resolving subcategories of CM(R) are CM(R) and {M ∈ modR | M ∼=
R⊕m ⊕ I⊕2n for ∃m,n ∈ Z≥0}.

To show this, we use the following lemma:

Lemma 16. Consider a short exact sequence 0 → I⊕m → W → I⊕n → 0. Then
W ∼= R⊕2i ⊕ Im+n−2i for some 0 ≤ i ≤ min{m,n}.

Let X := {M ∈ CM(R) | M ∼= R⊕m ⊕ I⊕2n for ∃m,n ∈ Z≥0}. Then X is a dense
subcategory of CM(R) because every maximal Cohen-Macaulay R-module is a finite direct
sum of R and I. Moreover, this lemma shows that X is closed under extensions.

Consider a short exact sequence

0 → R⊕m1 ⊕ I⊕n1 → R⊕m2 ⊕ I⊕2n2 → R⊕m3 ⊕ I⊕2n3 → 0.

This sequence is isomorphic to

(0 → I⊕n1 → R⊕r ⊕ I⊕2n2 → I⊕2n3 → 0)⊕ (0 → R⊕m1 → R⊕m1+m3 → R⊕m3 → 0)

since Ext1R(R, I) = Ext1R(I, R) = 0. Then, by Lemma 16, R⊕r ⊕ I⊕2n2 must be isomorphic
to

R⊕2i ⊕ I⊕n1+2n3−2i

for some integer i. Therefore, 2n2 = n1 + 2n3 − 2i as CM(R) is a Krull-Schmidt cate-
gory, see [6, Proposition 1.18]. Thus, R⊕m1 ⊕ I⊕n1 = R⊕m1 ⊕ I⊕2(n2−n3+i) belongs to X .
Consequently, X is a dense resolving subcategory of CM(R) which is not equal to CM(R).

Since R is a two dimensional simple singularity of type (A1), modR has only two
dense resolving subcategories; K0(modR)/⟨[R]⟩ ∼= Z/2Z has only two subgroups. As a
consequence, dense resolving subcategories of CM(R) are CM(R) and X . □
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