WALL-CROSSING BETWEEN STABLE AND CO-STABLE ADHM DATA

RYO OHKAWA

ABSTRACT. We prove formula between Nekrasov partition functions defined from stable and co-stable ADHM data for the plane following method by Nakajima-Yoshioka [4] based on the theory of wall-crossing formula developed by Mochizuki [2]. This formula is similar to conjectures by Ito-Maruyoshi-Okuda [1, (4.1), (4.2)] for A_1 singularity.

1. INTRODUCTION

Let Q be the affine plane \mathbb{C}^2 , and $\mathbb{P}^2 = \mathbb{P}(\mathbb{C} \oplus Q)$ the projective plane. For the homogeneous coordinate $[x_0, x_1, x_2]$ of \mathbb{P}^2 , we put $\ell_{\infty} = \{x_0 = 0\} \subset \mathbb{P}^2$ the infinity line.

Definition 1. A framed sheaf is a pair (E, Φ) of

- E: (torsion free) sheaf on \mathbb{P}^2 ,
- $\Phi: E|_{\ell_{\infty}} \cong \mathcal{O}_{\ell_{\infty}}^{\oplus r}$ an isomorphism, called framing.

We consider the moduli M(r, n) of framed sheaves (E, Φ) , $\operatorname{rk} E = r, c_2(E) = n$. In this report, we describe M(r, n) in terms of ADHM data, and show functional equations for generating functions of integrations over M(r, n), called Nekrasov partition functions.

2. ADHM data

Let $W = \mathbb{C}^r, V = \mathbb{C}^n$ be \mathbb{C} -vector spaces.

Definition 2. ADHM data are collections of linear maps (B_1, B_2, z, w)

$$B_1, B_2: V \to V, z: W \to V, w: V \to W$$

satisfying the condition $B_1B_2 - B_2B_1 + zw = 0$.

We put $[B_1, B_2] := B_1 B_2 - B_2 B_1$, and call $[B_1, B_2] + zw = 0$ ADHM relation.

Definition 3. ADHM data (B_1, B_2, z, w) are said to be stable if for any $S \subset V$ with $B_1(S), B_2(S) \subset S$ and im $z \subset S$, we have S = V.

From stable ADHM data (B_1, B_2, z, w) , we construct framed sheaves (E, Φ) as follows. Consider the following complex C^{\bullet} :

$$C^{\bullet} := 0 \to V \otimes \mathcal{O}_{\mathbb{P}^2}(-1) \xrightarrow{\sigma} \bigoplus_{\substack{W \otimes \mathcal{O}_{\mathbb{P}^2} \\ W \otimes \mathcal{O}_{\mathbb{P}^2}}} \xrightarrow{\tau} V \otimes \mathcal{O}_{\mathbb{P}^2}(1) \to 0$$

The detailed version of this paper has been submitted for publication elsewhere.

Here

$$\sigma = \begin{bmatrix} -B_2 x_0 + \mathrm{id}_V x_2 \\ B_1 x_0 - \mathrm{id}_V x_1 \\ w x_0 \end{bmatrix}, \tau = \begin{bmatrix} B_1 x_0 - \mathrm{id}_V x_1 & B_2 x_0 - \mathrm{id}_V x_2 & z x_0 \end{bmatrix}$$

Taking the middle cohomology ker $\tau/\operatorname{im} \sigma$, we get a framed sheaf (E, Φ) as follows.

The ADHM relation $[B_1, B_2] + zw = 0$ implies $\tau \circ \sigma = 0$, hence we put $E := \ker \tau / \operatorname{im} \sigma$. The stability condition for ADHM data implies that E is torsion-free. Furthermore, if we substitute $x_0 = 0$, then we see that $C^{\bullet}|_{\ell_{\infty}}$ is a direct sum of the Koszul resolution and $W \otimes \mathcal{O}_{\ell_{\infty}}$.

$$C^{\bullet}|_{\ell_{\infty}} = 0 \to V \otimes \mathcal{O}_{\ell_{\infty}}(-1) \xrightarrow{\begin{bmatrix} x_2 \\ -x_1 \\ 0 \end{bmatrix}} V \otimes \mathcal{O}_{\ell_{\infty}} \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} \xrightarrow{\quad \Theta \\ W \otimes \mathcal{O}_{\ell_{\infty}}} V \otimes \mathcal{O}_{\ell_{\infty}}(1) \to 0$$

From this, we get a natural framing $\Phi: E|_{\ell_{\infty}} \cong W \otimes \mathcal{O}_{\ell_{\infty}}$. Then we get a framed sheaf (E, Φ) .

For a converse construction

$$(E, \Phi) \mapsto (B_1, B_2, z, w),$$

we refer to [3, Ch. 2]. Hence if we put

$$\mathbb{M}(W, V) = \operatorname{Hom}_{\mathbb{C}}(Q^{\vee} \otimes V, V) \ni (B_1, B_2)
 \oplus \operatorname{Hom}_{\mathbb{C}}(W, V) \ni z
 \oplus \operatorname{Hom}_{\mathbb{C}}(\wedge^2 Q^{\vee} \otimes V, W) \ni w,
 \mathbb{L}(V) = \operatorname{Hom}_{\mathbb{C}}(\wedge^2 Q^{\vee} \otimes V, V)$$

and

$$\mu \colon \mathbb{M}(W,V) \to \mathbb{L}(V), (B_1, B_2, z, w) \mapsto [B_1, B_2] + zw,$$

then we have the following theorem.

Theorem 4 (Barth). We have an isomorphism

$$M(r,n) \cong \left[\mu^{-1}(0)^{st} / \operatorname{GL}(V)\right],$$

where GL(V) naturally acts on $\mu^{-1}(0)$, and $\mu^{-1}(0)^{st} \subset \mu^{-1}(0)$ is the stable locus.

We also consider

$$M_0(r,n) = \text{Spec } \Gamma(\mu^{-1}(0), \mathcal{O}_{\mu^{-1}(0)})^{\text{GL}(V)},$$

and call it instanton moduli, since it is identified with the set of gauge equivalence classes of *framed ASD connections* on $\mathbb{C}^2 = \mathbb{R}^4$. There exists a birational projective morphism

$$\pi\colon M(r,n)\to M_0(r,n).$$

3. INTEGRATIONS

We consider an algebraic torus

$$T = \mathbb{C}^*,$$

and maximal tori

$$T^{2} = \left\{ \begin{pmatrix} t_{1} & 0\\ 0 & t_{2} \end{pmatrix} \right\} \subset \operatorname{GL}(Q), T^{r} = \left\{ \begin{pmatrix} e_{1} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & e_{r} \end{pmatrix} \right\} \subset \operatorname{GL}(W).$$

We have compatible actions

$$\begin{array}{cccc} \mu^{-1}(0) & & & \operatorname{GL}(V) \times T^2 \times T^r \\ & & & & & & \\ & & & & & \\ & & & & \\ \mathbb{M}(W,V) & & & & \operatorname{GL}(V) \times \operatorname{GL}(Q) \times \operatorname{GL}(W), \end{array}$$

where $\operatorname{GL}(V) \times \operatorname{GL}(Q) \times \operatorname{GL}(W)$ -action on

$$\mathbb{M}(W,V) = \operatorname{Hom}_{\mathbb{C}}(Q^{\vee} \otimes V, V) \oplus \operatorname{Hom}_{\mathbb{C}}(W,V) \oplus \operatorname{Hom}_{\mathbb{C}}(\wedge^2 Q^{\vee} \otimes V, W)$$

is naturally defined. This gives $T^2 \times T^r$ -action on $M(r, n) = [\mu^{-1}(0)^{st} / \operatorname{GL}(V)]$. We consider a vector bundle $\mathcal{V} := [\mu^{-1}(0)^{st} \times V / \operatorname{GL}(V)] \to M(r, n) = [\mu^{-1}(0)^{st} / \operatorname{GL}(V)]$ over M(r,n). This bundle \mathcal{V} is called *tautological bundle*, and also have a natural $T^2 \times T^r$ -action as above. We introduce another torus $T^{2r} \ni (e^{m_1}, \ldots, e^{m_{2r}})$, and put $\widetilde{T} = T^2 \times T^r \times T^{2r}.$

For integrations, we consider \widetilde{T} -equivariant vector bundle

$$\bigoplus_{f=1}^{2r} \mathcal{V} \otimes e^{m_f}$$

over M(r, n), and use the following facts.

• $\pi: M(r, n) \to M_0(r, n)$ is \widetilde{T} -equivariant.

•
$$M_0(r,n)^T = \{ pt \}$$

• The \widetilde{T} -equivariant Chow ring $A^*_{\widetilde{T}}(\mathrm{pt})$ is equal to $\mathbb{Z}[\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m}]$, where

and $t_1, t_2, a_1, \ldots, a_r$ and m_1, \ldots, m_{2r} are identified with weight spaces having corresponding weights $t_1, t_2, a_1, \ldots, a_r$ and m_1, \ldots, m_{2r} .

As integrands, we take $\psi := e\left(\bigoplus_{f=1}^{2r} \mathcal{V} \otimes e^{m_f}\right) \in A^*_{\widetilde{T}}(M(r,n))$. Since we have $\psi \cap$ $[M(r,n)] \in A^{\widetilde{T}}_*(M(r,n))$, we define integration by

$$\int_{M(r,n)} \psi = (\iota_*)^{-1} \pi_* \left(\psi \cap [M(r,n)] \right) \in \mathbb{Q}(\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m})$$

Here $\iota: M_0(r,n)^{\widetilde{T}} \to M_0(r,n)$, and the push-forward $\iota_*: A^{\widetilde{T}}_* \left(M_0(r,n)^{\widetilde{T}} \right) \to A^{\widetilde{T}}_* \left(M_0(r,n) \right)$ is an isomorphism after tensoring $\mathbb{Q}(\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m})$.

We define *Nekrasov partition functions* as

$$Z(\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m}, q) = \sum_{n=0}^{\infty} q^n \int_{M(r,n)} \psi \in \mathbb{Q}(\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m})[[q]].$$

Our main theorem is the following.

Theorem 5. We have

$$Z(-\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m}, q) = (1 - (-1)^r)^{u_r} Z(\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m}, q).$$

Here

$$u_r = \frac{(\varepsilon_1 + \varepsilon_2)(2\sum_{\alpha=1}^r a_\alpha + \sum_{f=1}^{2r})}{\varepsilon_1 \varepsilon_2}.$$

In the following, we give an outline of the proof in [5].

Definition 6. ADHM data (B_1, B_2, z, w) are co-stable if $({}^tB_2, {}^tB_1, {}^tw, {}^tz)$ are stable.

We put $M^{c}(r,n) := \{(B_1, B_2, z, w) \mid ({}^{t}B_2, {}^{t}B_1, {}^{t}w, {}^{t}z) \in M(r,n)\}$. Then we have

$$Z(-\boldsymbol{\varepsilon}, \boldsymbol{a}, \boldsymbol{m}, q) = \sum_{n=0}^{\infty} q^n \int_{M^c(r,n)} \psi.$$

We analyze wall-crossing phenomena between stability defining M(r, n) and co-stability defining $M^{c}(r, n)$ by Mochizuki method [2]. This gives our Main thm.

References

- Y. Ito, K. Maruyoshi, T. Okuda, Scheme dependence of instanton counting in ALE spaces, J. High Energy Phys. 2013, no. 5, 045, front matter+16 pp.
- [2] T. Mochizuki, Donaldson Type Invariants for Algebraic Surfaces: Transition of Moduli Stacks, Lecture Notes in Math. 1972, Springer, Berlin (2009)
- [3] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lect. Ser. 18, Amer. Math. Soc., Providence, RI (1999)
- [4] H. Nakajima and K. Yoshioka, Perverse coherent sheaves on blowup. III. Blow-up formula from wallcrossing, Kyoto Journal of Mathematics 51, No. 2, 263–335 (2011)
- [5] R. Ohkawa, Wall-crossing between stable and co-stable ADHM data, arXiv:1506.06434.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY KYOTO 606-8502 JAPAN *E-mail address*: ohkawa@kurims.kyoto-u.ac.jp