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Abstract. The purpose of this paper is to give a complete structure theorem of the
Sally module of integrally closed ideals I in a Cohen-Macaulay local ring A satisfying the
equality e1(I) = e0(I)− ℓA(A/I) + ℓA(I

2/QI) + 1, where Q is a minimal reduction of I,
and e0(I) and e1(I) denote the first two Hilbert coefficients of I, respectively. This almost
extremal value of e1(I) with respect to classical inequalities holds a complete description
of the homological and the numerical invariants of the associated graded ring.

1. Introduction

This paper is based on a joint work with M. E. Rossi.
Throughout this paper, let A denote a Cohen-Macaulay local ring with maximal ideal

m and positive dimension d. Let I be an m-primary ideal in A and, for simplicity, we
assume the residue class field A/m is infinite. Let ℓA(N) denote, for an A-module N , the
length of N . The integers {ei(I)}0≤i≤d such that the equality

ℓA(A/I
n+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I)

holds true for all integers n ≫ 0, are called the Hilbert coefficients of A with respect to I.
Choose a parameter ideal Q of A which forms a reduction of I and let

R = R(I) := A[It] and T = R(Q) := A[Qt] ⊆ A[t]

denote, respectively, the Rees algebras of I and Q. Let

R′ = R′(I) := A[It, t−1] ⊆ A[t, t−1] and G = G(I) := R′/t−1R′ ∼=
⊕
n≥0

In/In+1.

Following Vasconcelos [11], we consider

S = SQ(I) = IR/IT ∼=
⊕
n≥1

In+1/QnI

the Sally module of I with respect to Q.

The notion of filtration of the Sally module was introduced by M. Vaz Pinto [12] as
follows. We denote by E(α), for a graded T -module E and each α ∈ Z, the graded
T -module whose grading is given by [E(α)]n = Eα+n for all n ∈ Z.

The detailed version of this paper has been submitted for publication elsewhere.
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Definition 1. ([12]) We set, for each i ≥ 1,

C(i) = (I iR/I iT )(−i+ 1) ∼=
⊕
n≥i

In+1/Qn−i+1I i.

and let L(i) = [C(i)]i T . Then, because L(i) ∼=
⊕

n≥i Q
n−iI i+1/Qn−i+1I i and C(i)/L(i) ∼=

C(i+1) as graded T -modules, we have the following natural exact sequences of graded
T -modules

0 → L(i) → C(i) → C(i+1) → 0

for every i ≥ 1.

We notice that C(1) = S, and C(i) are finitely generated graded T -modules for all i ≥ 1,
since R is a module-finite extension of the graded ring T .

So, from now on, we set

C = CQ(I) = C(2) = (I2R/I2T )(−1)

and we shall explore the structure of C.
Assume that I is integrally closed. Then, by [1, 3], the inequality

e1(I) ≥ e0(I)− ℓA(A/I) + ℓA(I
2/QI)

holds true and the equality e1(I) = e0(I) − ℓA(A/I) + ℓA(I
2/QI) holds if and only if

I3 = QI2. When this is the case, the associated graded ring G of I is Cohen-Macaulay and
the behavior of the Hilbert-Samuel function ℓA(A/I

n+1) of I is known (see [1], Corollary
9). Thus the integrally closed ideal I with e1(I) = e0(I) − ℓA(A/I) + ℓA(I

2/QI) enjoys
nice properties and it seems natural to ask what happens on the integrally closed ideal I
which satisfies the equality e1(I) = e0(I)− ℓA(A/I) + ℓA(I

2/QI) + 1. The problem is not
trivial even if we consider d = 1.

We notice here that ℓA(I
2/QI) = e0(I) + (d− 1)ℓA(A/I)− ℓA(I/I

2) holds true (see for
instance [9]), so that ℓA(I

2/QI) does not depend on a minimal reduction Q of I.

Let B = T/mT ∼= (A/m)[X1, X2, · · · , Xd] which is a polynomial ring with d indetermi-
nates over the field A/m. The main result of this paper is stated as follows.

Theorem 2. Assume that I is integrally closed. Then the following conditions are equiv-
alent:

(1) e1(I) = e0(I)− ℓA(A/I) + ℓA(I
2/QI) + 1,

(2) mC = (0) and rankB C = 1,
(3) C ∼= (X1, X2, · · · , Xc)B(−1) as graded T -modules for some 1 ≤ c ≤ d, where

X1, X2, · · · , Xd are linearly independent linear forms of the polynomial ring B.

When this is the case, c = ℓA(I
3/QI2) and I4 = QI3, and the following assertions hold

true:

(i) depth G ≥ d− c and depthT C = d− c+ 1,
(ii) depth G = d− c, if c ≥ 2.
(iii) Suppose c = 1 < d. Then HPI(n) = ℓA(A/I

n+1) for all n ≥ 0 and
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ei(I) =

 e1(I)− e0(I) + ℓA(A/I) + 1 if i = 2,
1 if i = 3 and d ≥ 3,
0 if 4 ≤ i ≤ d.

(iv) Suppose 2 ≤ c < d. Then HPI(n) = ℓA(A/I
n+1) for all n ≥ 0 and

ei(I) =

 e1(I)− e0(I) + ℓA(A/I) if i = 2,
0 if i ̸= c+ 1, c+ 2, 3 ≤ i ≤ d
(−1)c+1 if i = c+ 1, c+ 2, 3 ≤ i ≤ d

(v) Suppose c = d. Then HPI(n) = ℓA(A/I
n+1) for all n ≥ 2 and

ei(I) =

{
e1(I)− e0(I) + ℓA(A/I) if i = 2 and d ≥ 2,
0 if 3 ≤ i ≤ d

(vi) The Hilbert series HSI(z) =
∑

t≥0 ℓA(I
n/In+1)zt ∈ Z[[t]] is given by

HSI(z) =
ℓA(A/I) + {e0(I)− ℓA(A/I)− ℓA(I

2/QI)− 1}z + {ℓA(I2/QI) + 1}z2 + (1− z)c+1z

(1− z)d
.

Let us briefly explain how this paper is organized. We shall introduce an outline of a
proof of Theorem 2 in Section 3. In Section 2 we will introduce some auxiliary results on
the structure of the T -module C = CQ(I) = (I2R/I2T )(−1), some of them are stated in
a general setting. Our hope is that these information will be successfully applied to give
new insights in problems related to the structure of Sally’s module. In Section 4 we will
introduce some consequences of Theorem 2. In particular we shall explore the integrally
closed ideals I with e1(I) ≤ e0(I)− ℓA(A/I) + 3. In Section 5 we will construct a class of
Cohen-Macaulay local rings satisfying condition (1) in Theorem 2.

2. Preliminary Steps

The purpose of this section is to summarize some results on the structure of the graded
T -module C = CQ(I) = (I2R/I2T )(−1), which we need throughout this paper. Remark
that in this section I is an m-primary ideal not necessarily integrally closed.

Let us begin with the following.

Lemma 3. The following assertions hold true.

(1) mℓC = (0) for integers ℓ ≫ 0; hence dimTC ≤ d.
(2) The homogeneous components {Cn}n∈Z of the graded T -module C are given by

Cn
∼=

{
(0) if n ≤ 1,

In+1/Qn−1I2 if n ≥ 2.

(3) C = (0) if and only if I3 = QI2.
(4) mC = (0) if and only if mIn+1 ⊆ Qn−1I2 for all n ≥ 2.
(5) S = TC2 if and only if I4 = QI3.

In the following result we need that Q ∩ I2 = QI holds true. This condition is auto-
matically satisfied in the case where I is integrally closed (see [4, 6]).
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Proposition 4. Suppose that Q ∩ I2 = QI. Then we have AssT C ⊆ {mT} so that
dimT C = d, if C ̸= (0).

The following Lemma 5 is the crucial fact in the proof of Proposition 4.

Lemma 5. Assume that Q ∩ I2 = QI. Then we have AssT (T/I
2T ) = {mT}.

The following techniques are due to M. Vaz Pinto [12, Section 2].
Let L = L(1) = S1T then L ∼=

⊕
n≥1Q

n−1I2/QnI and S/L ∼= C as graded T -modules.
Then there exist a canonical exact sequence

0 → L → S → C → 0 (†)
of graded T -modules (Definition 1).

We set D = (I2/QI) ⊗A (T/AnnA(I
2/QI)T ). Notice here that D forms a graded T -

module and T/AnnA(I
2/QI)T ∼= (A/AnnA(I

2/QI))[X1, X2, · · · , Xd] is the polynomial
ring with d indeterminates over the ring A/AnnA(I

2/QI). Let

θ : D(−1) → L

denotes an epimorphism of graded T -modules such that θ(
∑

α xα ⊗ Xα1
1 Xα2

2 · · ·Xαd
d ) =∑

α xαa
α1
1 aα2

2 · · · aαd
d t|α|+1 for xα ∈ I2 and α = (α1, α2, · · · , αd) ∈ Zd with αi ≥ 0 (1 ≤

i ≤ d), where |α| =
∑d

i=1 αi, and xα and xαa
α1
1 aα2

2 · · · aαd
d t|α|+1 denote the images of xα in

I2/QI and xαa
α1
1 aα2

2 · · · aαd
d t|α|+1 in L.

Then we have the following lemma.

Lemma 6. Suppose that Q∩ I2 = QI. Then the map θ : D(−1) → L is an isomorphism
of graded T -modules.

Thanks to Lemma 6 and [2, Proposition 2.2 (2)], we can prove the following result.

Proposition 7. Suppose that Q ∩ I2 = QI. Then we have

ℓA(A/I
n+1) = e0(I)

(
n+ d

d

)
− {e0(I)− ℓA(A/I) + ℓA(I

2/QI)}
(
n+ d− 1

d− 1

)
+ℓA(I

2/QI)

(
n+ d− 2

d− 2

)
− ℓA(Cn)

for all n ≥ 0.

The following result specifies [2, Proposition 2.2 (3)] and, by using Proposition 4 and
7, the proof takes advantage of the same techniques.

Proposition 8. Suppose that Q ∩ I2 = QI. Let p = mT . Then we have

e1(I) = e0(I)− ℓA(A/I) + ℓA(I
2/QI) + ℓTp(Cp).

Combining Lemma 3 (3) and Proposition 8 we obtain the following result that was
proven by Elias and Valla [1, Theorem 2.1] in the case where I = m.

Corollary 9. Suppose that Q ∩ I2 = QI. Then we have e1(I) ≥ e0(I) − ℓA(A/I) +
ℓA(I

2/QI). The equality e1(I) = e0(I) − ℓA(A/I) + ℓA(I
2/QI) holds true if and only if

I3 = QI2. When this is the case, e2(I) = e1(I)− e0(I) + ℓA(A/I) if d ≥ 2, ei(I) = 0 for
all 3 ≤ i ≤ d, and G is a Cohen-Macaulay ring.
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In the end of this section, let us introduce the relationship between the depth of the
module C and the associated graded ring G of I.

Lemma 10. Suppose that Q ∩ I2 = QI and C ̸= (0). Let s = depthTC. Then we have
depthG ≥ s− 1. In particular, we have depthG = s− 1, if s ≤ d− 2.

3. Outline of proof of Theorem 2

The purpose of this section is to prove Theorem 2. Throughout this section, let I be
an integrally closed m-primary ideal. The following theorem is the key.

Theorem 11. Suppose that I is integrally closed. Then the following conditions are
equivalent:

(1) e1(I) = e0(I)− ℓA(A/I) + ℓA(I
2/QI) + 1,

(2) mC = (0) and rankB C = 1,
(3) there exists a non-zero graded ideal a of B such that C ∼= a(−1) as graded T -

modules.

To prove Theorem 11, we need the following bound on e2(I).

Lemma 12. ([5, Theorem 12], [10, Corollary 2.5], [9, Corollary 3.1], ) Suppose d ≥ 2 and
let I be an integrally closed ideal, then e2(I) ≥ e1(I)− e0(I) + ℓA(A/I).

As a direct consequence of Theorem 11 the following result holds true.

Proposition 13. Assume that I is integrally closed. Suppose that e1(I) = e0(I) −
ℓA(A/I) + ℓA(I

2/QI) + 1 and I4 = QI3 and let c = ℓA(I
3/QI2). Then

(1) 1 ≤ c ≤ d and µB(C) = c.
(2) depth G ≥ d− c and depthTC = d− c+ 1,
(3) depth G = d− c, if c ≥ 2.
(4) Suppose c = 1 < d. Then HPI(n) = ℓA(A/I

n+1) for all n ≥ 0 and

ei(I) =

 e1(I)− e0(I) + ℓA(A/I) + 1 if i = 2,
1 if i = 3 and d ≥ 3,
0 if 4 ≤ i ≤ d.

(5) Suppose 2 ≤ c < d. Then HPI(n) = ℓA(A/I
n+1) for all n ≥ 0 and

ei(I) =

 e1(I)− e0(I) + ℓA(A/I) if i = 2,
0 if i ̸= c+ 1, c+ 2, 3 ≤ i ≤ d
(−1)c+1 if i = c+ 1, c+ 2, 3 ≤ i ≤ d

(6) Suppose c = d. Then HPI(n) = ℓA(A/I
n+1) for all n ≥ 2 and

ei(I) =

{
e1(I)− e0(I) + ℓA(A/I) if i = 2 and d ≥ 2,
0 if 3 ≤ i ≤ d

(7) The Hilbert series HSI(z) is given by

HSI(z) =
ℓA(A/I) + {e0(I)− ℓA(A/I)− ℓA(I

2/QI)− 1}z + {ℓA(I2/QI) + 1}z2 + (1− z)c+1z

(1− z)d
.
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We prove now Theorem 2. Assume assertion (1) in Theorem 2. Then we have an
isomorphism C ∼= a(−1) as graded B-modules for a graded ideal a in B by Theorem 11.
Once we are able to show I4 = QI3, then, because C = TC2 by Lemma 3 (5), the ideal
a is generated by linearly independent linear forms {Xi}1≤i≤c of B with c = ℓA(I

3/QI2)
(recall that a1 ∼= C2

∼= I3/QI2 by Lemma 3 (2)). Therefore, the implication (1) ⇒ (3)
in Theorem 2 follows. We also notice that, the last assertions of Theorem 2 follow by
Proposition 13.

Thus our Theorem 2 has been proven modulo the following theorem.

Theorem 14. Assume that I is integrally closed. Suppose that e1(I) = e0(I)− ℓA(A/I)+
ℓA(I

2/QI) + 1. Then I4 = QI3.

4. Consequences

The purpose of this section is to present some consequences of Theorem 2.
We explore the relationship between the inequality of Northcott [7] and the structure

of the graded module C of an integrally closed ideal.
It is well known that, for an m-primary ideal I in a Cohen-Macaulay local ring (A,m),

the inequality

e1(I) ≥ e0(I)− ℓA(A/I)

holds true ([7]) and the equality holds if and only if I2 = QI ([4, Theorem 2.1]). When
this is the case, the associated graded ring G of I is Cohen-Macaulay.

Suppose that I is integrally closed and e1(I) = e0(I) − ℓA(A/I) + 1 then, thanks to
[5, Corollary 14], we have I3 = QI2 and the associated graded ring G of I is Cohen-
Macaulay. Thus the integrally closed ideal I with e1(I) ≤ e0(I) − ℓA(A/I) + 1 seems
satisfactory understood. In this section, we briefly study the integrally closed ideals I
with e1(I) = e0(I)− ℓA(A/I) + 2, and e1(I) = e0(I)− ℓA(A/I) + 3.

Let us begin with the following.

Theorem 15. Assume that I is integrally closed. Suppose that e1(I) = e0(I)−ℓA(A/I)+2
and I3 ̸= QI2. Then the following assertions hold true.

(1) ℓA(I
2/QI) = ℓA(I

3/QI2) = 1, and I4 = QI3.
(2) C ∼= B(−2) as graded T -modules.
(3) depth G = d− 1.
(4) e2(I) = 3 if d ≥ 2, e3(I) = 1 if d ≥ 3, and ei(I) = 0 for 4 ≤ i ≤ d.
(5) The Hilbert series HSI(z) is given by

HSI(z) =
ℓA(A/I) + {e0(I)− ℓA(A/I)− 1}z + z3

(1− z)d
.

Notice that the following result also follows by [9, Theorem 4.6].

Corollary 16. Assume that I is integrally closed and suppose that e1(I) = e0(I) −
ℓA(A/I) + 2. Then depth G ≥ d − 1 and I4 = QI3, and the graded ring G is Cohen-
Macaulay if and only if I3 = QI2.
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Before closing this section, we briefly study the integrally closed ideal I with e1(I) =
e0(I)− ℓA(A/I) + 3. Suppose that e1(I) = e0(I)− ℓA(A/I) + 3 then we have

0 < ℓA(I
2/QI) ≤ e1(I)− e0(I) + ℓA(A/I) = 3

by Corollary 9. If ℓA(I
2/QI) = 1 then we have depthG ≥ d−1 by [8, 13]. If ℓA(I

2/QI) = 3
then the equality e1(I) = e0(I)− ℓA(A/I) + ℓA(I

2/QI) holds true, so that I3 = QI2 and
the associated graded ring G of I is Cohen-Macaulay by Corollary 9. Thus we need to
consider the following.

Theorem 17. Suppose that d ≥ 2. Assume that I is integrally closed and e1(I) =
e0(I)−ℓA(A/I)+3 and ℓA(I

2/QI) = 2. Let c = ℓA(I
3/QI2). Then the following assertions

hold true.

(1) Either C ∼= B(−2) as graded T -modules or there exists an exact sequence

0 → B(−3) → B(−2)⊕B(−2) → C → 0

of graded T -modules.
(2) 1 ≤ c ≤ 2 and I4 = QI3.
(3) Suppose c = 1 then depthG ≥ d − 1 and e2(I) = 4, e3(I) = 1 if d ≥ 3, and

ei(I) = 0 for 4 ≤ i ≤ d.
(4) Suppose c = 2 then depthG = d−2 and e2(I) = 3, e3(I) = −1 if d ≥ 3, e4(I) = −1

if d ≥ 4, and ei(I) = 0 for 5 ≤ i ≤ d.
(5) The Hilbert series HSI(z) is given by

HSI(z) =


ℓA(A/I) + {e0(I)− ℓA(A/I)− 2}z + z2 + z3

(1− z)d
, if c = 1,

ℓA(A/I) + {e0(I)− ℓA(A/I)− 2}z + 3z3 − z4

(1− z)d
if c = 2.

We remark that ℓA(I
2/QI) measures how far is the multiplicity of I from the minimal

value, see [9, Corollary 2.1]. If ℓA(I
2/QI) ≤ 1, then depth G ≥ d− 1, but it is still open

the problem whether depthG ≥ d − 2, assuming ℓA(I
2/QI) = 2. Theorem 17 confirms

the conjectured bound.

Corollary 18. Assume that I is integrally closed. Suppose that e1(I) = e0(I)−ℓA(A/I)+
3. Then depth G ≥ d− 2.

5. An Example

The goal of this section is to construct an example of Cohen-Macaulay local ring with
the maximal ideal m satisfying the equality in Theorem 2 (1). The class of examples we
exhibit includes an interesting example given by H.-J. Wang, see [9, Example 3.2].

Theorem 19. Let d ≥ c ≥ 1 be integers. Then there exists a Cohen-Macaulay local ring
(A,m) such that

d = dimA, e1(m) = e0(m) + ℓA(m
2/Qm), and c = ℓA(m

3/Qm2)

for some minimal reduction Q = (a1, a2, · · · , ad) of m.
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To construct necessary examples we may assume that c = d.
Let m ≥ 0 and d ≥ 1 be integers. Let

D = k[[{Xj}1≤j≤m, Y, {Vi}1≤i≤d, {Zi}1≤i≤d]]

be the formal power series ring with m + 2d + 1 indeterminates over an infinite field k,
and let

a = [(Xj | 1 ≤ j ≤ m) + (Y )] · [(Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d)]

+(ViVj | 1 ≤ i, j ≤ d, i ̸= j) + (V 3
i − ZiY | 1 ≤ i ≤ d).

We set A = D/a and denote the images of Xj, Y , Vi, and Zi in A by xj, y, vi, and ai,
respectively. Then, since

√
a = (Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d), we have

dimA = d. Let m = (xj | 1 ≤ j ≤ m) + (y) + (vi | 1 ≤ i ≤ d) + (ai | 1 ≤ i ≤ d) be
the maximal ideal in A and we set Q = (ai | 1 ≤ i ≤ d). Then, m2 = Qm + (v2i | 1 ≤
i ≤ d), m3 = Qm2 + Qy, and m4 = Qm3. Therefore Q is a minimal reduction of m, and
a1, a2, · · · , ad is a system of parameters for A. We then have the following.

Theorem 20. The following assertions hold true.

(1) A is a Cohen-Macaulay local ring with dimA = d.
(2) CQ(m) ∼= B+(−1) as graded T -modules. Therefore, ℓA(m

3/Qm2) = d.
(3) e0(m) = m+ 2d+ 2, e1(m) = m+ 3d+ 2.
(4) e2(m) = d+ 1 if d ≥ 2, and ei(m) = 0 for all 3 ≤ i ≤ d.
(5) G(m) is a Buchsbaum ring with depthG(m) = 0 and I(G(m)) = d.
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