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Abstract. Slicing a module into semisimple ones is useful to study modules. Loewy
structures provide a means of doing so. To establish the Loewy structures of projective
modules over a finite dimensional symmetric algebra over a field F , the Landrock lemma
is a primary tool. The lemma and its corollary relate radical layers of projective inde-
composable modules to radical layers of the F -duals of those modules (“dual symmetry”)
and to socle layers of those modules (“reciprocity”).

We generalize these results to artin algebras in functorial manner. Our main theorem
relates radical layers of projective modules to socle layers of injective modules. A key
tool to prove the main theorem is a pair of adjoint functors, which we call socle functors
and capital functors.
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1. Introduction

Semisimple modules are one of the most well-understood classes of modules. Hence slicing
a module into semisimple ones is a natural way to study modules. Loewy structures
provide a means of doing so. To establish Loewy structures several studies has been done
[2, 3, 8]. A primary tool in these studies is the Landrock lemma [4], which is stated below.

Let A be an R-artin algebra and

(−)∗ := HomR(−, E)

the standard duality where E is the minimal injective cogenerator of modR, the category
of finitely generated (right) R-modules. The opposite algebra is denoted by Aop. The
term module refers to a finitely generated right module. Recall that A is a symmetric

algebra if A ∼= A∗ as (A,A)-bimodules. For other notations see Definition 6.

Theorem 1 (Landrock [4, Theorem B]). For a finite dimensional symmetric algebra A
over a field F , let Pi and Pj be the projective covers of simple A-modules Si and Sj

respectively. Then for every integer n ≥ 1 we have an F -linear isomorphism

HomA(radn Pi, Sj) ∼= HomAop

(

radn(P
∗

j ), S
∗

i

)

.

The detailed version of this paper will be submitted for publication elsewhere.
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Corollary 2. Under the same assumptions and notations of Theorem 1, we have an

F -linear isomorphism

HomA(radn Pi, Sj) ∼= HomA(Si, socn Pj).

Although these results are powerful as indicated at the beginning, they are not appli-
cable to algebras other than finite dimensional symmetric ones. We generalize the above
results to artin algebras. To state our main theorem we let

(−)∨ := HomA(−, A)

be the A-dual functor and ν(−) :=
(

(−)∨
)

∗

the Nakayama functor. Let projA denotes
the category of projective A-modules and injA the category of injective A-modules.

Theorem 3. Let A be an artin R-algebra and n a natural number. Then two functors

HomA(capn−, ν?),HomA(−, socn ν?) : (projA)
op × projA → modR

are naturally isomorphic.

Corollary 4 (Dual of Theorem 3). Let A be an artin R-algebra and n a natural number.

Then two functors

HomA(ν
−1−, socn?),HomA(capn ν

−1−, ?) : (injA)op × injA → modR

are naturally isomorphic.

Remark 5. The above results are slightly generalized than [7] reflecting the comments and
questions the author got in this symposium.

2. Notation

We introduce basic terminology of this proceeding and state some useful lemmas first.
Then proofs of the main theorem is given. The Landrock lemma is proved as a special
case of the main theorem.

Definition 6. For a module V over an algebra, socV denotes the sum of minimal sub-
modules of V and radV denotes the intersection of maximal submodules of V . For an
integer n ≥ 0, the nth socle of V is defined inductively by soc0 V = 0 and

(2.1) socn V = { v ∈ V | v + socn−1 V ∈ soc(V/ socn−1 V ) }

if n > 0. For an integer n ≥ 0, the nth radical of V is also defined inductively by
rad0 V = V and

(2.2) radn V = rad(radn−1 V )

if n > 0. We then write

(2.3) socn V = socn V/ socn−1 V

and call it the nth socle layer of V for n ≥ 1. We also write

(2.4) radn V = radn−1 V/ radn V

and call it the nth radical layer of V for n ≥ 1.
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Definition 7. For an integer n ≥ 0 and a module V over an algebra we write capn V =
V/ radn V and call it the nth capital of V . Since every homomorphism maps the nth
socle into the nth socle and the nth radical into the nth radical, socn and capn define
endofunctors. We call these endofunctors the nth socle functor and the nth capital functor

respectively.

3. Sketch of Proofs

We refer the reader to [7] for details. (Although proofs are given for finite dimensional
cases almost the same argument work.) The next simple lemma, which is essentially the
hom-tensor adjunction, is vital to prove the main theorem.

Lemma 8 ([7, Lemma 2.3]). Let A be an artin algebra. Then for every integer n ≥ 0 the

nth capital functor and nth socle functor yield an adjoint pair of functors.

modA modA
capn

socn
capn ⊣ socn .

For a sense of unity we adopt an alias

(3.1) capn = radn .

Note that capn and socn define endofunctors as capn and socn. The following lemma can
essentially be found in [5, Problem 2.14.ii].

Lemma 9 ([7, Lemma 2.4]). Let A be an artin algebra. For every integer n ≥ 1 we have

a natural isomorphism

modA modAopsocn
(−)∗

cap
n (socn(−))∗ ∼= capn((−)∗).

Sketch of Proof of Theorem 3. Let (P,Q), (P ′, Q′) ∈ (projA)op × projA and take a mor-
phism (P,Q) → (P ′, Q′). Then we have the following four short exact sequences.

Hom(capn−1 P, νQ) Hom(capn P, νQ) Hom(cap
n
P, νQ)

Hom(P, socn−1 νQ) Hom(P, socn νQ) Hom(P, socn νQ)

Hom(capn−1 P ′, νQ′) Hom(capn P ′, νQ′) Hom(cap
n
P ′, νQ′)

Hom(P ′, socn−1 νQ′) Hom(P ′, socn νQ′) Hom(P ′, socn νQ′)

Then we have the left four diagonal dashed morphisms by Lemma 8 and have the right
two diagonal dashed morphisms that commute top and bottom faces of the right cuboid.
In addition, the two morphisms are isomorphisms by the five lemma. We also have vertical
dashed morphisms that canonically defined. Finally a chase revels that the right face of
the right cuboid commute. Thus we have

�(3.2) HomA(capn P, νQ) ∼= HomA(P, socn νQ).

Remark 10. The above proof is element-free.

We derive Theorem 1 and Corollary 2 from the main theorem in the following.
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Corollary 11 ([7, Theorem 1.3]). For an artin R-algebra A, let Pi and Pj be the projective

covers of simple A-modules Si and Sj respectively. Then for every integer n ≥ 1 we have

R-linear isomorphisms

HomA(radn Pi, Sj) ∼= HomAop

(

radn(P
∨

j ), S
∗

i

)

(3.3)

and

HomA(radn Pi, Sj) ∼= HomA(Si, socn νPj).(3.4)

The next properties of symmetric algebras is well-known.

Proposition 12 ([1, Proposition IV.3.8]). For every symmetric artin algebra, we have

the following.

(i) (−)∗ ∼= (−)∨.
(ii) ν ∼= 1.

Proof of Theorem 1. Apply Proposition 12(i) to (3.3). �

Proof of Corollary 2. Apply Proposition 12(ii) to (3.4). �

Remark 13. Okuyama and Tsushima gave a short proof of the Landrock lemma for group
algebras in [6, Theorem 2].
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