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Abstract. We explain the notion of stable derivator and how it enhances triangulated
categories. We also show how classical derived equivalences based on Bernstein-Gelfand-
Ponomarev reflection functors generalize to a refined version in the context of stable
derivators, and indicate what tilting modules are in that context.

1. Introduction

The concept of derivator appeared independently in the work of Heller [13], Groth-
endieck [4] and Franke [3]. One motivation for using derivators is that they provide an
enhancement of triangulated categories which fixes some well-known problems, such as
non-functoriality of the mapping cone construction. The main favorable features are that
the language is still relatively elementary (it employs standard category theory) and that
the setting is homotopy invariant (which in algebra typically simply means that quasi-
isomorphisms are always made formally invertible).
In order to explain the philosophy, let us inspect the issue with the non-functoriality of

mapping cones. To this end, we will denote by [n] the linearly ordered set (0 < 1 < · · · <
n). Now consider an abelian category A and the category A[1] of morphism in A. We have
the right exact cokernel functor cok : A[1] → A and its left derived functor is precisely
the mapping cone. To be more precise, the cokernel lifts to categories of complexes,
cok : Ch(A[1]) ∼= Ch(A)[1] → Ch(A) and we have a square with a natural transformation

Ch(A[1])
cok //

��

Ch(A)

��
D(A[1])

cone
// D(A)

✡✡✡✡
AI

satisfying a universal property (we refer to [14, §8.4–8.5] for details). As usual, this is
proved by taking suitable left resolutions. It suffices to observe that

(1) the cokernel functor cok : Ch(A[1])→ Ch(A) is exact on the full exact subcategory
of Ch(A[1]) consisting of monomorphisms (by the 3× 3-lemma),

(2) each morphism f : X → Y admits a surjective quasi-isomorphism from the mono-
morphism X → Y ⊕ CX (here CX is just the cone of 1X : X → X), and

(3) the cokernel of X → Y ⊕ CX is none other than the cone(f).

This is a short introduction to motivation and results of the series of joint papers [8, 9, 10, 11] with
Moritz Groth.
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Here is the subtlety: The mapping cone construction yields a functor D(A[1])→ D(A)
but this functor does not factor through the canonical functor D(A[1])→ D(A)[1] which we
denote by dia[1]. The derived category of the morphism category is simply not equivalent
to the morphism category of the derived category—dia[1] is always full and essentially
surjective, but rarely faithful. One can see that explicitly already for A = Mod k where
k is a field. The category of compact objects of D(A[1]) ≃ D(Mod k(• → •)) has the
Auslander-Reiten quiver
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A direct computation reveals that cone is a localization functor which sends all suspen-
sions of δ to isomorphisms, whereas dia[1] is an additive quotient functor which sends all
suspensions of δ to zero.
The conclusion is that if we wish to have a functorial cone, we better consider not

only D(A) alone, but also D(A[1]), the derived category of morphisms. If we want other
functorial derived limit and colimit constructions (e.g. homotopy pushouts or pullbacks),
we should consider representations in A of other shapes too. In fact, it is often easiest to
consider all shapes, i.e. the assignment

Cat ∋ C 7−→ D(AC),

together with various functors and natural transformations connecting these derived cate-
gories. This is very roughly what a derivator is and this is also why representation theory
is relevant—we consider representations of categories C in A.

2. Kan extensions

As indicated, another important ingredient of the definition of a derivator are derived
limits and colimits. Given C ∈ Cat, there is an exact ‘constant diagram’ functor ∆C : A →
AC . The usual functors of limits and colimits of C-shaped diagrams, AC → A, if they
exist, are then right and left adjoints to ∆C , respectively.
Homotopy limits and homotopy colimits are simply derived versions, provided that they

exist. As this usually does not cause any confusion, we will omit the word ‘homotopy’.

D(AC)

colim

&&

lim

88
D(A)

∆Coo

There is a technical point, though. We often need more than just colimits, namely
so-called Kan extensions. If X : C → A is an object of AC and u : C → D is a functor in
Cat, we might want to extend X to an object of AD. We usually cannot extend X on the
nose, but only up to a natural transformation satisfying a universal property. As there
is a choice regarding the direction of the transformation, we distinguish between left and
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right Kan extensions.

C
X //

u

��

A C
X //

u

��

A

✵✵✵✵
T\

ε

D
LKanu(X)

DD
✵✵✵✵
��
η

D
RKanu(X)

DD

Standard facts about left Kan extensions are summarized in the following proposition.
A dual version holds for right Kan extensions. We denote by 1 the terminal category
with one object and its identity morphism only, and if Y ∈ AD and d ∈ D, we denote by
Yd ∈ A the component Y (d) of Y at the object d.

Proposition 1. Let A be a cocomplete abelian category and let u : C → D be a functor.
Then the following hold:

(1) (LKanu(X), η) exists for each X ∈ AC;
(2) LKanu : A

C → AD is a left adjoint functor to the forgetful functor u∗ : AD → AC

given by X 7→ X ◦u (hence C-shaped colimits are simply left Kan extensions along
C → 1);

(3) given X ∈ AC and d ∈ D, we have

LKanu(X)d ∼= colimu/d(X ◦ p)

via a canonical morphism, where u/d is a slice category whose objects are of the
form (c ∈ C, g : u(c)→ d), and p : u/d→ C is the canonical projection;

(4) if u : C → D is fully faithful, so is LKanu : A
C → AD.

Example 2. To illustrate the distinction between Kan extension and colimits, consider
the commutative square � = [1]× [1], the embedding of the upper left corner ip : p→ �,
and the unique functor π : p→ 1. If X ∈ Ap, then LKanπ ∈ A(X) is the pushout of X as
an object, while LKanip(X) ∈ A� is the corresponding pushout square.

As with limits and colimits, we also consider the derived versions if they exist. Follow-
ing [4, 5], we will use the shorthand notations u! for the (derived) left Kan extensions and
u∗ for the (derived) right Kan extension.

3. Derivators (definition and examples)

Now we can formally define our main object of interest.

Definition 3. A prederivator D is a strict 2-functor D : Catop → CAT, where Cat is the
2-category of all small categories and CAT is the ‘2-category’ of all (not necessarily small)
categories.

Remark 4. We follow the convention of [5] that ‘op’ in Catop applies only to functors and
not to natural transformations. That is

D : C

u
''

v
77

✤✤ ✤✤
�� α D 7−→ D(C)

✤✤ ✤✤
�� α∗ D(D)

u∗

kk

v∗ss

There is no agreement on that in the literature, [4] changes the direction of natural
transformations as well for example.
Note also that we use the notation u∗ for D(u) and α∗ for D(α).

–3–



A derivator is a prederivator which satisfies basic properties of derived Kan extensions,
analogous to Proposition 1, parts (2) and (3).

Definition 5. A derivator D is a prederivator satisfying the following axioms:

(Der1) For each collection (Ci)i∈I of small categories, the canonical functor D(
∐

i∈I Ci)→∏
i∈I D(Ci) is an equivalence.

(Der2) Given C ∈ Cat and f : X → Y in D(C), then f is an isomorphism if and only if
fc : Xc → Yc is an isomorphism in D(1) for every c ∈ C. Here Xc ∈ D(1) is just a
shorthand notation for c∗(X), where we identify c with the functor 1→ C which
points at the object c.

(Der3) For each u : C → D in Cat, the functor u∗ : D(D)→ D(C) has both adjoints.

D(C)

u! =LKanu

&&

u∗ =RKanu

88
D(D)

u∗

oo

(Der4) Pointwise formulas for u!(X)d and u∗(X)d analogous to Proposition 1(3) and its
dual hold (see [5, §1.1] for details).

Objects X ∈ D(C) are called coherent C-shaped diagrams in D (as opposed to incoher-
ent diagrams, which are simply C-shaped diagrams in D(1)). The 2-functor structure of
D allows to compare between these two notions. Namely, one can construct an abstract
underlying diagram functor

diaC : D(C)→ D(1)C .

Example 6. (1) If A is a category, then YA : C 7−→ AC is a prederivator, and it is a
derivator if and only if A is complete.

(2) If A is a Grothendieck abelian category, DA : C 7−→ D(AC) is a derivator, which
enhances the usual derived category D(A) = DA(1).

(3) More generally, given any model category M, there is a homotopy derivator
HoM : C 7−→ Ho(MC) (see [1] and [5, Proposition 1.30]).

Remark 7. One can generalize various facts from ordinary category theory to the deriva-
tor setting. For example, if u : C → D is fully faithful, then u!, u∗ : D(C) → D(D)
are fully faithful functors for any derivator D (see [5, Proposition 1.20] and compare to
Proposition 1(4)).

The latter observation allows for the following definition (cp. Example 2).

Definition 8. Consider the fully faithful embeddings ip : p→ � and iy : y→ � of corners
into a commutative square � = [1]×[1]. Objects in the essential image of the fully faithful
functor (ip)! : D(p) → D(�) are called coherent cocartesian squares. Dually, objects in
the essential image of (iy)∗ are coherent cartesian squares.

4. Pointed and stable derivators

As the examples above show, a general derivator does not have much to do with trian-
gulated categories. For that we need additional axioms.
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Definition 9. A derivator D is pointed if the underlying category D(1) has a zero (=
simultaneously initial and terminal) object 0 ∈ D(1).

One can show that then D(C) has a zero object for each C ∈ Cat, [5, Proposition
3.2]. Derivators DA of Grothendieck abelian categories and, more generally, homotopy
derivators HoM of pointed model categories serve as examples.
With pointed derivators one can mimic standard constructions of fiber and cofiber

sequences from algebraic topology. In the context of DA for A Grothendieck abelian, one
precisely constructs exact triangles this way. To see how this works, consider the fully
faithful functors in Cat, where the image of i is the upper left horizontal morphism of the
category in the middle:

• // •

i
−→

• //

��

• // •

j
−→

• //

��
=

• //

��
=

•

��
• • // • // •

We consider the action of the fully faithful functor j! ◦ i∗ : D([1]) → D([2] × [1]). If
F ∈ D([1]) is a coherent morphism whose underlying incoherent morphism is dia[1](F ) =
f : x→ y, the underlying diagram of j!(i∗(F )) in D(1) looks like the left hand side of

(4.1)

x
f //

��
=

y //

g

��
=

0

��

x //

��
=

0

��
0 // cone(f)

h // x′ 0 // x′

One can prove from the axioms that the two small squares in j!(i∗(F )) are cocartesian,
and so is the outer one, depicted on the right hand side of (4.1). In the ordinary category
theory (or in a derivator of the form YA as in Example 6(1)), this would imply x′ = 0.
However, already in the case of Example 6(2), we have x′ ∼= Σx. In fact, in any pointed
derivator D we can define the suspension functor

Σ: D(1) −→ D(1)

using the right hand side square of (4.1). As the suspension is defined using adjoint
functors, it is determined within D by a universal property, and so it is unique up to a
unique isomorphism. By identifying x′ with Σx in (4.1) and taking the corresponding
subdiagram, we obtain an incoherent cofiber sequence in D(1):

(4.2) x
f //y

g //cone(f)
h //Σx.

However, this still does not mean that we have a triangulated category. For example,
consider the standard model structure on Top∗, the category of pointed topological spaces,
where the class of morphisms to be formally made invertible are the usual weak homotopy
equivalences. Then the derivator HoTop

∗

has the usual homotopy category of pointed
spaces as the underlying category, and this category is not even additive. To fix that, we
need so-called stable derivators.

Definition 10. A pointed derivator is stable, if it satisfies either of the following two
equivalent conditions (see [6, Theorem 7.1]):
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(1) The suspension functor Σ is an equivalence.
(2) A coherent square X ∈ D(�) is cartesian if and only if it is cocartesian.

Now we have the following result (it was sketched by Maltsiniotis in [16], with details
filled in by Groth in [5, §4]).

Theorem 11. Let D be a strong stable derivator. Then D(1) with the suspension functor
and cofiber sequences as described above forms a triangulated category.

Remark 12. To construct a cofiber sequence (4.2), one needs to start with a coherent
morphism F ∈ D([1]). Since the triangulated structure requires a triangle for any (inco-
herent) morphism f ∈ D(1)[1], we need to be able to lift incoherent morphisms to coherent
ones. This is roughly what a strong derivator is. More precisely, we require for technical
reasons that all (naturally defined) partial diagram functors diaA,[1] : D(A×[1])→ D(A)[1]

are full and essentially surjective (these functors also reflect isomorphisms by (Der2)).

Remark 13. In fact, more was proved in [5, §4] under the assumptions of Theorem 11—
D(C) is triangulated for each C and u∗, u!, u∗ are exact functors for each u : C → D. Even
better, D lifts to a 2-functor whose codomain is the ‘category’ of triangulated categories.

TriaCAT

forget

��
Catop

D

//

66

CAT

5. Abstract reflection functors

If k is a field, the strong stable derivator Dk := DMod k was in fact studied a lot in
representation theory. This is of course since if C is a category with finitely many objects,
then Dk(C) = D((Mod k)C) ≃ D(Mod kC), where kC is the category algebra over k.
A well-known phenomenon going back to Happel [12] is that there exist a plethora of

nontrivial derived equivalences Dk(C) ≃ Dk(D) for non-equivalent pairs of categories C 6≃
D. The simplest of them is wired in the definition of a stable derivator. Since cocartesian
squares are cartesian and vice versa, the composition of the following adjunctions yields
a pair of mutually inverse triangle equivalences

Dk(•←•→•)
(ip)! //

Dk(�)
i∗y //

i∗
p

oo Dk(•→•←•)
(iy)∗

oo .

Of course such an equivalence exist for every stable derivator by the very definition. By
pushing this idea further, many other derived equivalences based on reflection functors
generalize to an arbitrary stable derivator as well. Working out this was one of the aims
of the series of papers [8, 9, 10, 11]. There is also a previous work by Ladkani [15], which
is conceptually closely related, but using rather different methods.
In [11], we start with an arbitrary small category C ∈ Cat and finitely many (not

necessarily distinct) objects y1, . . . , yn ∈ C. Then we form categories C− and C+ by
adding freely to C a new object q and n new morphisms pointing to or from, respectively,
each of y1, . . . , yn.
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C

q ·
· y1

· y2 = y3

The category C−

C

q ·
· y1

· y2 = y3

The category C+

Then D(C−) ≃ D(C+) for any stable derivator by [11], but in fact more was proved
there. Given any derivator D and A ∈ Cat, there exists a shifted derivator given by

D
A : C 7−→ D(A× C).

Furthermore, derivators themselves form a ‘2-category’ DER, [5, §2]. Of particular
interest is the notion of an exact morphism F : D → E of stable derivators. By definition,
F must preserve zero objects and cartesian/cocartesian squares. If D ,E are strong and
stable, exact morphisms F : D → E in DER can be viewed as enhancements of exact
functors of the underlying triangulated categories. The main result is:

Theorem 14 ([11, Theorem 9.11]). Let C ∈ Cat and y1, . . . , yn ∈ C. Then for any stable
derivator D , there exists an equivalence

ΦD : D
C− ∼
−→ D

C+

.

Moreover, given any exact morphism F : D → E of stable derivators, there is a natural
isomorphism γF : F

C+

◦ΦD → ΦE ◦ F
C−

. These natural isomorphisms satisfy certain co-
herence relations making them compatible with compositions of exact morphisms of stable
derivators and with natural transformations between exact morphisms of stable derivators.

This improves classical derived equivalences based on reflection functors in several ways.
We obtain a more general result (for any stable derivator), more refined equivalences
(derivator equivalences as opposed to triangulated equivalences) and more compatibility
(the equivalences commute with any other exact morphism of stable derivators).

6. Tilting bimodules

Following [10, §8], we can encode for a given pair C+, C− the entire package (FD , γF )
of derivator equivalences and natural isomorphisms from Theorem 14 into a single tilting
bimodule. This bimodule is quite explicit and resembles classical tilting bimodules repre-
senting Happel’s derived equivalences, only the coefficients are not in a field k but rather
in the sphere spectrum.
The key point is related to a derivator HoSp enhancing the stable homotopy category

of spectra. The smash product of spectra induces a monoidal structure on HoSp in the
sense of [7]. That is, we for any pair A,B ∈ Cat we have a functor

⊗ : HoSp(A)×HoSp(B)→HoSp(A×B)

compatible with the 2-functor structure of HoSp and commuting with (homotopy) colimits
in each variable. The key result for us is that by [2, §A.3], every stable derivator D admits
a canonical action by HoSp, i.e. we have

⊗ : HoSp(A)×D(B)→ D(A× B)
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with similar properties. Moreover, for any category C, there is a relatively straightforward
way to define the ‘tensor product over C’, i.e. functors

⊗[C] : HoSp(A× Cop)×D(C ×B)→ D(A×B)

(see [7, §5]). Now, in the situation of Theorem 14, the techniques of [10, §8] allow us to
find an object T ∈HoSp(C

+ × (C−)op) (this is our tilting bimodule) such that for every
stable derivator D we have

FD
∼= T ⊗[C−] − : D

C−

−→ D
C+

.
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