t-STRUCTURES AND SILTING OBJECTS

TAKAHIDE ADACHI

ABSTRACT. In this note, we study a relationship between bounded t-structures and silting objects. Keller-Vossieck showed that for the path algebra of a Dynkin quiver, there exists a bijection between the set of isoclasses of basic silting objects and the set of bounded t-structures. Unfortunately, it is known that a bounded t-structure is not necessarily given by a silting object. We give a characterization of a class of algebras which satisfies the condition that all bounded t-structures are given by silting objects.

Throughout this note, Λ is a finite dimensional algebra over a field. We denote by $\mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda)$ the bounded derived category of finitely generated Λ -modules and by $\mathsf{K}^{\mathrm{b}}(\mathsf{proj}\Lambda)$ the bounded homotopy category of finitely generated projective Λ -modules.

In this note, we study a relationship between bounded t-structures on $\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$ and silting objects of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$. Recall the definition of t-structures which are introduced by Beĭlinson-Bernstein-Deligne. For details, we refer to [2]. Let \mathcal{T} be a triangulated category. A pair ($\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0}$) of full subcategories of \mathcal{T} is called a t-structure on \mathcal{T} if the following conditions are satisfied:

- (1) $\mathcal{T}^{\leq -1} \subset \mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 1} \subset \mathcal{T}^{\geq 0}$.
- (2) Hom(X, Y) = 0 for all $X \in \mathcal{T}^{\leq 0}$ and $Y \in \mathcal{T}^{\geq 1}$.
- (3) $\mathcal{T} = \mathcal{T}^{\leq 0} * \mathcal{T}^{\geq 1}$ (*i.e.*, for each object Z of \mathcal{T} , there exists a triangle $X \to Z \to Y \to X[1]$ with $X \in \mathcal{T}^{\leq 0}$ and $Y \in \mathcal{T}^{\geq 1}$).

Here, for each integer n, let $\mathcal{T}^{\leq n} := \mathcal{T}^{\leq 0}[-n]$ and $\mathcal{T}^{\geq n} := \mathcal{T}^{\geq 0}[-n]$.

We collect basic results of t-structures. Let $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ be a t-structure on \mathcal{T} . Note that, for each integer n, the pair $(\mathcal{T}^{\leq n}, \mathcal{T}^{\geq n})$ is also t-structure. The following statements hold.

- (1) $\mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0}$ are additive subcategories which are closed under extensions and direct summands.
- (2) The heart $\mathcal{T}^0 := \mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$ is an abelian category.
- (3) The inclusion $\mathcal{T}^{\leq 0} \to \mathcal{T}$ has a left adjoint functor $\sigma^{\leq 0}$ and the inclusion $\mathcal{T}^{\geq 0} \to \mathcal{T}$ has a right adjoint functor $\sigma^{\geq 0}$. Moreover, $\sigma^0 := \sigma^{\leq 0} \sigma^{\geq 0} : \mathcal{T} \to \mathcal{T}^0$ is a cohomological functor.

A *t*-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is said to be *bounded* if

$$\mathcal{T} = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^{\leq n} = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^{\geq n},$$

or equivalently, if $\mathcal{T} = \text{thick}(\mathcal{T}^0)$. It is called an *algebraic t*-structure if in addition the heart is a length category with finitely many nonisomorphic simple objects. We denote

The detailed version of this paper will be submitted for publication elsewhere.

by t-str \mathcal{T} the set of bounded *t*-structures on \mathcal{T} and by t-str_{alg} \mathcal{T} the subset of t-str \mathcal{T} consisting of algebraic *t*-structures.

We give a well-known example of t-structures. Let Λ be a finite dimensional algebra. We define two subcategories of $\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$

$$\mathcal{D}_{\Lambda}^{\leq 0} := \{ X \in \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda) \mid H^{i}(X) = 0 \text{ for each } i > 0 \},\$$
$$\mathcal{D}_{\Lambda}^{\geq 0} := \{ X \in \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda) \mid H^{i}(X) = 0 \text{ for each } i < 0 \},\$$

where $H^i(X)$ is the *i*-th cohomology of X. Then $(\mathcal{D}_{\Lambda}^{\leq 0}, \mathcal{D}_{\Lambda}^{\geq 0})$ is a bounded *t*-structure on $\mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda)$. Moreover, it is algebraic because the heart is $\mathsf{mod}\Lambda$.

To study t-structures on $\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$, Keller-Vossieck introduced the notion of silting objects which is a generalization of the notion of tilting objects. An object M of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ is said to be silting if $\operatorname{Hom}(M, M[i]) = 0$ for all integers i > 0, and $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda) = \mathsf{thick}M$.

Theorem 1. [8] Let Λ be the path algebra of a Dynkin quiver. Then there exists a bijection between the set of isomorphism classes of basic silting objects of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ and the set of bounded t-structures on $\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$.

Recently, Koenig-Yang gave an analog of Theorem 1 for any finite dimensional algebra. For an object M, we define subcategories of $D^{b}(\mathsf{mod}\Lambda)$ as follows:

$$\mathcal{D}_M^{\leq 0} := \{ X \in \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda) \mid \operatorname{Hom}(M, X[i]) = 0 \text{ for each } i > 0 \},\$$
$$\mathcal{D}_M^{\geq 0} := \{ X \in \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda) \mid \operatorname{Hom}(M, X[i]) = 0 \text{ for each } i < 0 \}.$$

Recall that Λ is a silting object of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ and $(\mathcal{D}_{\Lambda}^{\leq 0}, \mathcal{D}_{\Lambda}^{\geq 0})$ is an algebraic *t*-structure on $\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$. The correspondence is extended to the map from basic silting objects to algebraic *t*-structures. We denote by silt $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ the set of isomorphism classes of basic silting objects of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$.

Theorem 2. [9] Let Λ be a finite dimensional algebra. Then there exists a bijection

 $\operatorname{silt} \mathsf{K}^{\mathrm{b}}(\operatorname{\mathsf{proj}}\Lambda) \to t\operatorname{-str}_{\operatorname{alg}} \mathsf{D}^{\mathrm{b}}(\operatorname{\mathsf{mod}}\Lambda)$

given by $M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0})$. Moreover, the heart $\mathcal{D}_M^0 := \mathcal{D}_M^{\leq 0} \cap \mathcal{D}_M^{\geq 0}$ is equivalent to $\mathsf{modEnd}(M)$.

From the viewpoint of the bijection above, Theorem 1 implies that, if Λ is the path algebra of a Dynkin quiver, then all bounded *t*-structures are algebraic. Our aim of this note is to show the following theorem, which is a generalization of Theorem 1. An algebra Λ is said to be *silting-discrete* if, for each integer n > 0, the set of isomorphism classes of basic *n*-term silting objects of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ is finite. Note that, for a silting object M, it is *n*-term if and only if it satisfies $\operatorname{Hom}(\Lambda, M[i]) = 0$ and $\operatorname{Hom}(M, \Lambda[i + n - 1]) = 0$ for all integers i > 0.

Theorem 3. Let Λ be a finite dimensional algebra. Then the following are equivalent:

- (a) Λ is silting-discrete.
- (b) All bounded t-structures on $D^{b}(mod\Lambda)$ are algebraic.

In the following, we give a sketch of the proof of Theorem 3. First, we show $(a) \Rightarrow (b)$. The following result plays an important role. However, we skip the proof.

Proposition 4. Let M be a basic silting object of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$. Let $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ be a bounded t-structure on $\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$ satisfying $\mathcal{D}_{M}^{\leq 0} \supseteq \mathcal{D}^{\leq 0}$. Then there exists a basic silting object N of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ such that $\mathcal{D}_{M}^{\leq 0} \supseteq \mathcal{D}_{N}^{\leq 0} \supset \mathcal{D}^{\leq 0}$.

Proof of Theorem 3. (a) \Rightarrow (b): Assume that a bounded t-structure $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ is not algebraic. We can easily check that there exists an integer n > 0 such that

$$\mathcal{D}^{\leq 0}_{\Lambda} \supset \mathcal{D}^{\leq 0} \supset \mathcal{D}^{\leq -n+1}_{\Lambda}$$

Since $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ is not algebraic, we have $\mathcal{D}^{\leq 0}_{\Lambda} \supseteq \mathcal{D}^{\leq 0}$. By Proposition 4, there exists a basic silting object M_1 such that

$$\mathcal{D}_{\Lambda}^{\leq 0} \supsetneq \mathcal{D}_{M_1}^{\leq 0} \supsetneq \mathcal{D}^{\leq 0} \supsetneq \mathcal{D}_{\Lambda[n-1]}^{\leq 0}.$$

Moreover, by applying Proposition 4, we have an infinite sequence

$$\mathcal{D}_{\Lambda}^{\leq 0} \supseteq \mathcal{D}_{M_1}^{\leq 0} \supseteq \mathcal{D}_{M_2}^{\leq 0} \supseteq \cdots \supseteq \mathcal{D}_{M_k}^{\leq 0} \supseteq \cdots$$

Then, for each silting object M_k , we obtain $\mathcal{D}_{\Lambda}^{\leq 0} \supseteq \mathcal{D}_{M_k}^{\leq 0} \supseteq \mathcal{D}_{\Lambda[n-1]}^{\leq 0}$, and hence for each integer i > 0

Hom
$$(\Lambda, M_k[i]) = 0$$
 and Hom $(M_k, \Lambda[i+n-1]) = 0$.

Namely, there exist infinitely many non-isomorphic basic *n*-term silting objects. This implies that Λ is not silting-discrete.

Next we show (b) \Rightarrow (a). We need the following result. A full subcategory \mathcal{X} of $\mathsf{mod}\Lambda$ is called *torsion class* if it is closed under images and extensions. Moreover, it is called *functorially finite* if in addition there exists a Λ -module M such that $\mathcal{X} = \mathsf{Fac}(M)$.

Proposition 5. Let Λ be a finite dimensional algebra. Then Λ is silting-discrete if and only if, for each basic silting object M, all torsion classes of modEnd(M) is functorially finite.

Proof. By [1] and [7], an algebra Λ is silting-discrete if and only if, for each basic silting object M, the set f-torsEnd(M) of functorially finite torsion classes of modEnd(M) is finite. Moreover, by [4], the set f-torsEnd(M) is finite if and only if each torsion class of modEnd(M) is functorially finite. Hence the assertion follows.

Now we are ready to show Theorem 3.

Proof of Theorem 3. (b) \Rightarrow (a): By Proposition 5, we have only to show that, for each basic silting object M of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$, all torsion classes of $\mathsf{modEnd}(M)$ are functorially finite. Indeed, let \mathcal{X} be a torsion class of $\mathsf{modEnd}(M)$ and define a full subcategory

$$\mathcal{X}^{\perp} := \{ Y \in \mathsf{modEnd}(M) \mid \mathrm{Hom}(X, Y) = 0 \text{ for each } X \in \mathcal{X} \}.$$

By [5], the pair $(\mathcal{D}_M^{\leq -1} * \mathcal{X}, \mathcal{X}^{\perp}[1] * \mathcal{D}_M^{\geq 0})$ is also a bounded *t*-structure on $\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$. Thus, by (b) and Theorem 2, there exists a basic silting object N of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ such that

$$\mathcal{D}_N^{\leq 0} = \mathcal{D}_M^{\leq -1} * \mathcal{X}.$$

On the other hand, since $\mathcal{D}_M^{\leq 0} \supset \mathcal{D}_N^{\leq 0} \supset \mathcal{D}_M^{\leq -1}$ holds, we obtain

$$\mathcal{D}_N^{\leq 0} = \mathcal{D}^{\leq -1} * \mathcal{X}(N),$$

where $\mathcal{X}(N) := \mathsf{Fac}(\sigma_M^0(N))$ is a torsion class of $\mathsf{modEnd}(M)$ by [6, 3]. We can easily check that

$$\mathcal{X} = \mathcal{X}(N).$$

Hence, \mathcal{X} is functorially finite. Therefore the assertion follows.

As a consequence of Theorem 3, a finite dimensional algebra Λ is silting-discrete if and only if the map $M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0})$ gives a bijection

silt
$$\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda) \to \operatorname{t-str}\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$$
.

Since the path algebra of each Dynkin quiver is silting-discrete, we can recover Theorem 1 from our result.

References

- T. Aihara, Y. Mizuno, Classifying tilting complexes over preprojective algebras of Dynkin type, arXiv:1509.07387.
- [2] A. A. Beilinson, J. Bernstein, P. Deligne, *Faisceaux pervers*, Analysis and topology on singular spaces, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math. France, Paris, 1982.
- [3] A. B. Buan, Y. Zhou, A silting theorem, J. Pure Appl. Algebra 220 (2016), no. 7, 2748–2770.
- [4] L. Demonet, O. Iyama, G. Jasso, τ-tilting finite algebras, g-vectors and brick-τ-rigid correspondence, arXiv:1503.00285.
- [5] D. Happel, I. Reiten, S. O. Smalø, *Tilting in abelian categories and quasitilted algebras*, Mem. Amer. Math. Soc. **120** (1996), no. 575.
- [6] M. Hoshino, Y. Kato, J. Miyachi, On t-structure and torsion theories induced by compact objects, J. Pure Appl. Algebra 167 (2002), no. 1, 15–35.
- [7] O. Iyama, P. Jørgensen, D. Yang, Intermediate co-t-structures, two-term silting objects, τ -tilting modules and torsion classes, Algebra Number Theory 8 (2014), no. 10, 2413–2431.
- [8] B. Keller, D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253.
- S. Koenig, D. Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403–438.

Faculty of Liberal Arts and Sciences Osaka Prefecture University 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, JAPAN

 $E\text{-}mail\ address: \texttt{adachi@las.osakafu-u.ac.jp}$