Abstract. In this note, we study a relationship between bounded \(t \)-structures and silting objects. Keller-Vossieck showed that for the path algebra of a Dynkin quiver, there exists a bijection between the set of isoclasses of basic silting objects and the set of bounded \(t \)-structures. Unfortunately, it is known that a bounded \(t \)-structure is not necessarily given by a silting object. We give a characterization of a class of algebras which satisfies the condition that all bounded \(t \)-structures are given by silting objects.

Throughout this note, \(\Lambda \) is a finite dimensional algebra over a field. We denote by \(\text{D}^b(\text{mod}\Lambda) \) the bounded derived category of finitely generated \(\Lambda \)-modules and by \(\text{K}^b(\text{proj}\Lambda) \) the bounded homotopy category of finitely generated projective \(\Lambda \)-modules.

In this note, we study a relationship between bounded \(t \)-structures on \(\text{D}^b(\text{mod}\Lambda) \) and silting objects of \(\text{K}^b(\text{proj}\Lambda) \). Recall the definition of \(t \)-structures which are introduced by Beilinson-Bernstein-Deligne. For details, we refer to [2]. Let \(\mathcal{T} \) be a triangulated category. A pair \((\mathcal{T}^\leq, \mathcal{T}^\geq) \) of full subcategories of \(\mathcal{T} \) is called a \(t \)-structure on \(\mathcal{T} \) if the following conditions are satisfied:

1. \(\mathcal{T}^\leq \cap \mathcal{T}^\geq = \mathcal{T}^\geq \cap \mathcal{T}^\leq \).
2. \(\text{Hom}(X, Y) = 0 \) for all \(X \in \mathcal{T}^\leq \) and \(Y \in \mathcal{T}^\geq \).
3. \(\mathcal{T} = \mathcal{T}^\leq \oplus \mathcal{T}^\geq \) (i.e., for each object \(Z \) of \(\mathcal{T} \), there exists a triangle \(X \to Z \to Y \to X[1] \) with \(X \in \mathcal{T}^\leq \) and \(Y \in \mathcal{T}^\geq \)).

Here, for each integer \(n \), let \(\mathcal{T}^\leq_n := \mathcal{T}^\leq[-n] \) and \(\mathcal{T}^\geq_n := \mathcal{T}^\geq[-n] \).

We collect basic results of \(t \)-structures. Let \((\mathcal{T}^\leq, \mathcal{T}^\geq) \) be a \(t \)-structure on \(\mathcal{T} \). Note that, for each integer \(n \), the pair \((\mathcal{T}^\leq_n, \mathcal{T}^\geq_n) \) is also \(t \)-structure. The following statements hold.

1. \(\mathcal{T}^\leq \) and \(\mathcal{T}^\geq \) are additive subcategories which are closed under extensions and direct summands.
2. The heart \(\mathcal{T}^0 := \mathcal{T}^\leq \cap \mathcal{T}^\geq \) is an abelian category.
3. The inclusion \(\mathcal{T}^\leq \to \mathcal{T} \) has a left adjoint functor \(\sigma^\leq \) and the inclusion \(\mathcal{T}^\geq \to \mathcal{T} \) has a right adjoint functor \(\sigma^\geq \). Moreover, \(\sigma^0 := \sigma^\leq \sigma^\geq : \mathcal{T} \to \mathcal{T}^0 \) is a cohomological functor.

A \(t \)-structure \((\mathcal{T}^\leq, \mathcal{T}^\geq) \) is said to be **bounded** if

\[
\mathcal{T} = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^\leq_n = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^\geq_n,
\]

or equivalently, if \(\mathcal{T} = \text{thick}(\mathcal{T}^0) \). It is called an **algebraic** \(t \)-structure if in addition the heart is a length category with finitely many nonisomorphic simple objects. We denote

The detailed version of this paper will be submitted for publication elsewhere.
by \(t \)-str\(\mathcal{T} \) the set of bounded \(t \)-structures on \(\mathcal{T} \) and by \(t \)-str_\text{alg} \(\mathcal{T} \) the subset of \(t \)-str\(\mathcal{T} \) consisting of algebraic \(t \)-structures.

We give a well-known example of \(t \)-structures. Let \(\Lambda \) be a finite dimensional algebra. We define two subcategories of \(\text{D}^b(\text{mod}\Lambda) \)
\[
\mathcal{D}_\Lambda^{\leq 0} := \{ X \in \text{D}^b(\text{mod}\Lambda) \mid H^i(X) = 0 \text{ for each } i > 0 \},
\]
\[
\mathcal{D}_\Lambda^{\geq 0} := \{ X \in \text{D}^b(\text{mod}\Lambda) \mid H^i(X) = 0 \text{ for each } i < 0 \},
\]
where \(H^i(X) \) is the \(i \)-th cohomology of \(X \). Then \((\mathcal{D}_\Lambda^{\leq 0}, \mathcal{D}_\Lambda^{\geq 0}) \) is a bounded \(t \)-structure on \(\text{D}^b(\text{mod}\Lambda) \). Moreover, it is algebraic because the heart is \(\text{mod}\Lambda \).

To study \(t \)-structures on \(\text{D}^b(\text{mod}\Lambda) \), Keller-Vossieck introduced the notion of silting objects which is a generalization of the notion of tilting objects. An object \(M \) of \(\text{K}^b(\text{proj}\Lambda) \) is said to be silting if \(\text{Hom}(M, M[i]) = 0 \) for all integers \(i > 0 \), and \(\text{K}^b(\text{proj}\Lambda) = \text{thick} M \).

Theorem 1. [8] Let \(\Lambda \) be the path algebra of a Dynkin quiver. Then there exists a bijection between the set of isomorphism classes of basic silting objects of \(\text{K}^b(\text{proj}\Lambda) \) and the set of bounded \(t \)-structures on \(\text{D}^b(\text{mod}\Lambda) \).

Recently, Koenig-Yang gave an analog of Theorem 1 for any finite dimensional algebra. For an object \(M \), we define subcategories of \(\text{D}^b(\text{mod}\Lambda) \) as follows:
\[
\mathcal{D}_M^{\leq 0} := \{ X \in \text{D}^b(\text{mod}\Lambda) \mid \text{Hom}(M, X[i]) = 0 \text{ for each } i > 0 \},
\]
\[
\mathcal{D}_M^{\geq 0} := \{ X \in \text{D}^b(\text{mod}\Lambda) \mid \text{Hom}(M, X[i]) = 0 \text{ for each } i < 0 \}.
\]
Recall that \(\Lambda \) is a silting object of \(\text{K}^b(\text{proj}\Lambda) \) and \((\mathcal{D}_\Lambda^{\leq 0}, \mathcal{D}_\Lambda^{\geq 0}) \) is an algebraic \(t \)-structure on \(\text{D}^b(\text{mod}\Lambda) \). The correspondence is extended to the map from basic silting objects to algebraic \(t \)-structures. We denote by \(\text{silt}\text{K}^b(\text{proj}\Lambda) \) the set of isomorphism classes of basic silting objects of \(\text{K}^b(\text{proj}\Lambda) \).

Theorem 2. [9] Let \(\Lambda \) be a finite dimensional algebra. Then there exists a bijection
\[
\text{silt}\text{K}^b(\text{proj}\Lambda) \rightarrow \text{t-str}_{\text{alg}} \text{D}^b(\text{mod}\Lambda)
\]
given by \(M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0}) \). Moreover, the heart \(\mathcal{D}_M^0 := \mathcal{D}_M^{\leq 0} \cap \mathcal{D}_M^{\geq 0} \) is equivalent to \(\text{modEnd}(M) \).

From the viewpoint of the bijection above, Theorem 1 implies that, if \(\Lambda \) is the path algebra of a Dynkin quiver, then all bounded \(t \)-structures are algebraic. Our aim of this note is to show the following theorem, which is a generalization of Theorem 1. An algebra \(\Lambda \) is said to be silting-discrete if, for each integer \(n > 0 \), the set of isomorphism classes of basic \(n \)-term silting objects of \(\text{K}^b(\text{proj}\Lambda) \) is finite. Note that, for a silting object \(M \), it is \(n \)-term if and only if it satisfies \(\text{Hom}(\Lambda, M[i]) = 0 \) and \(\text{Hom}(M, \Lambda[i+n-1]) = 0 \) for all integers \(i > 0 \).

Theorem 3. Let \(\Lambda \) be a finite dimensional algebra. Then the following are equivalent:

(a) \(\Lambda \) is silting-discrete.

(b) All bounded \(t \)-structures on \(\text{D}^b(\text{mod}\Lambda) \) are algebraic.

In the following, we give a sketch of the proof of Theorem 3. First, we show (a) \(\Rightarrow \) (b). The following result plays an important role. However, we skip the proof.
Proposition 4. Let M be a basic silting object of $\text{K}^b(\text{proj}\Lambda)$. Let $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ be a bounded t-structure on $\text{D}^b(\text{mod}\Lambda)$ satisfying $\mathcal{D}^{\leq 0}_M \supset \mathcal{D}^{\leq 0}$. Then there exists a basic silting object N of $\text{K}^b(\text{proj}\Lambda)$ such that $\mathcal{D}^{\leq 0}_N = \mathcal{D}^{\leq 0}_M$.

Proof of Theorem 3. (a)⇒(b): Assume that a bounded t-structure $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ is not algebraic. We can easily check that there exists an integer $n > 0$ such that $\mathcal{D}^{\leq n}_A = \mathcal{D}^{\leq n+1}_A$.

Since $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ is not algebraic, we have $\mathcal{D}^{\leq 0} \supset \mathcal{D}^{\leq 0}_M$. By Proposition 4, there exists a basic silting object M_1 such that $\mathcal{D}^{\leq 0} \supset \mathcal{D}^{\leq 0}_M \supset \mathcal{D}^{\leq 0}_{M_1}$.

Moreover, by applying Proposition 4, we have an infinite sequence $\mathcal{D}^{\leq 0}_A \supset \mathcal{D}^{\leq 0}_{M_1} \supset \mathcal{D}^{\leq 0}_{M_2} \supset \ldots \supset \mathcal{D}^{\leq 0}_{M_k} \supset \ldots$.

Then, for each silting object M_k, we obtain $\mathcal{D}^{\leq 0}_A \supset \mathcal{D}^{\leq 0}_{M_k} \supset \mathcal{D}^{\leq 0}_{A[n-1]}$, and hence for each integer $i > 0$ $\text{Hom}(\Lambda, M_k[i]) = 0$ and $\text{Hom}(M_k, \Lambda[i + n - 1]) = 0$.

Namely, there exist infinitely many non-isomorphic basic n-term silting objects. This implies that Λ is not silting-discrete.

Next we show (b)⇒(a). We need the following result. A full subcategory \mathcal{X} of $\text{mod}\Lambda$ is called torsion class if it is closed under images and extensions. Moreover, it is called functorially finite if in addition there exists a Λ-module M such that $\mathcal{X} = \text{Fac}(M)$.

Proposition 5. Let Λ be a finite dimensional algebra. Then Λ is silting-discrete if and only if, for each basic silting object M, all torsion classes of $\text{modEnd}(M)$ is functorially finite.

Proof. By [1] and [7], an algebra Λ is silting-discrete if and only if, for each basic silting object M, the set f-torsEnd(M) of functorially finite torsion classes of $\text{modEnd}(M)$ is finite. Moreover, by [4], the set f-torsEnd(M) is finite if and only if each torsion class of $\text{modEnd}(M)$ is functorially finite. Hence the assertion follows.

Now we are ready to show Theorem 3.

Proof of Theorem 3. (b)⇒(a): By Proposition 5, we have only to show that, for each basic silting object M of $\text{K}^b(\text{proj}\Lambda)$, all torsion classes of $\text{modEnd}(M)$ are functorially finite. Indeed, let \mathcal{X} be a torsion class of $\text{modEnd}(M)$ and define a full subcategory $\mathcal{X}^\perp := \{Y \in \text{modEnd}(M) \mid \text{Hom}(X, Y) = 0 \text{ for each } X \in \mathcal{X}\}$.

By [5], the pair $(\mathcal{D}^{\leq -1}_M \ast \mathcal{X}, \mathcal{X}^\perp [1] \ast \mathcal{D}^{\geq 0}_M)$ is also a bounded t-structure on $\text{D}^b(\text{mod}\Lambda)$. Thus, by (b) and Theorem 2, there exists a basic silting object N of $\text{K}^b(\text{proj}\Lambda)$ such that $\mathcal{D}^{\leq 0}_N = \mathcal{D}^{\leq -1}_M \ast \mathcal{X}$.

On the other hand, since $\mathcal{D}^{\leq 0}_M \supset \mathcal{D}^{\leq 0}_N \supset \mathcal{D}^{\leq -1}_M$ holds, we obtain $\mathcal{D}^{\leq 0}_N = \mathcal{D}^{\leq -1}_M \ast \mathcal{X}(N)$.
where $\mathcal{X}(N) := \text{Fac}(\sigma_M^0(N))$ is a torsion class of $\text{modEnd}(M)$ by [6, 3]. We can easily check that

$$\mathcal{X} = \mathcal{X}(N).$$

Hence, \mathcal{X} is functorially finite. Therefore the assertion follows.

As a consequence of Theorem 3, a finite dimensional algebra Λ is silting-discrete if and only if the map $M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{> 0})$ gives a bijection

$$\text{siltKb}^b(\text{proj}\Lambda) \to \text{t-strD}^b(\text{mod}\Lambda).$$

Since the path algebra of each Dynkin quiver is silting-discrete, we can recover Theorem 1 from our result.

References

Faculty of Liberal Arts and Sciences
Osaka Prefecture University
1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, JAPAN
E-mail address: adachi@las.osakafu-u.ac.jp