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Abstract. Bricks are a generalization of simple modules, and they are fundamental
in the representation theory of finite-dimensional algebras. We study sets of pairwise
orthogonal bricks called semibricks in terms of τ -tilting theory. Our main results in
this paper are canonical bijections between the set of support τ -tilting modules, the set
of semibricks satisfying a certain condition called left-finiteness, and the set of 2-term
simple-minded collections.

Introduction

The motivation of this paper is simple modules over a finite-dimensional algebra A over
a field K. The following properties are well-known;

• for a simple A-module S, the endomorphism ring EndA(S) is a division K-algebra,
• there is no nonzero map between nonisomorphic two simple A-modules,
• the smallest thick subcategory of the bounded derived category Db(modA) con-
taining all simple A-modules is Db(modA) itself.

We consider objects having such properties in the module category modA (Section 1) and
the derived category Db(modA) (Section 2).
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Notations

Throughout of this paper, K is a field and A is a finite-dimensional K-algebra. The cat-
egory of finite-dimensional right A-modules is denoted by modA. Unless otherwise stated,
algebras and modules are finite-dimensional, and subcategories are full subcategories.

For M ∈ modA, the symbol indM denotes the set of isoclasses of indecomposable
direct summands of M , and we set |M | := #(indM). If M ∼=

⊕m
i=1M

ni
i with Mi inde-

composable, Mi ̸∼= Mj, and ni ≥ 1, then indM = {M1, . . . ,Mm} and |M | = m hold.

1. Semibricks and support τ-tilting modules

First, we define the new concept called semibricks.

Definition 1. We define as follows.

(1) An A-module S in modA is called a brick if the endomorphism ring EndA(S) is a
division K-algebra.

The detailed version of this paper will be submitted for publication elsewhere. See [2].
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(2) A set S of isoclasses of bricks in modA is called a semibrick if HomA(S1, S2) = 0
holds for any S1 ̸= S2 ∈ S. We define sbrickA as the set of semibricks in modA.

Some algebras, such as the Kronecker quiver algebra, admit semibricks consisting of
infinitely many bricks. In such cases, there are so many semibricks in modA, but we
investigate semibricks in terms of τ -tilting theory, so we only deal with the semibricks
satisfying some condition on torsion pairs. The symbol T(S) (resp. F(S)) denotes the
smallest torsion (resp. torsion-free) class containing a semibrick S, and the symbol f-torsA
(resp. f-torf A) denotes the set of functorially finite torsion (resp. torsion-free) classes.

Definition 2. Let S ∈ sbrickA. Then the semibrick S is called left finite (resp. right
finite) if T(S) ∈ f-torsA (resp. F(S) ∈ f-torf A). We define fL-sbrickA (resp. fR-sbrickA)
as the subset of sbrickA consisting of all the left finite (resp. right finite) semibricks.

For example, a semibrick consisting of isoclasses of simple A-modules is left finite and
right finite. We remark that a subset of a left finite semibrick is not necessarily left finite
and that left finiteness is not generally equivalent to right finiteness.

Functorially finite torsion classes are strongly related with the support τ -tilting modules
introduced by Adachi–Iyama–Reiten [1]. Let M ∈ modA. Then M is called a support
τ -tilting module if there exists P ∈ projA satisfying HomA(M, τM) = 0, HomA(P,M) = 0
and |M | + |P | = |A|. Here, projA is the full subcategory of modA consisting of the
projective A-modules. If two projective modules P,Q satisfy the above conditions for a
module M , then the additive closures addP, addQ ⊂ modA coincide [1, Proposition 2.3].
Dually, the concept of support τ−1-tilting modules is defined.

We define sτ -tiltA (resp. sτ –1-tiltA) as the set of isoclasses of basic support τ -tilting
(resp. τ−1-tilting) modules in modA. It is easy to see that A, 0 ∈ sτ -tiltA, and simple
projective A-modules also belong to sτ -tiltA.
Adachi–Iyama–Reiten [1] obtained the following important result on support τ -tilting

modules. For M ∈ modA, FacM denotes the full subcategory of modA consisting of
factor modules of objects in addM .

Proposition 3. [1, Theorem 2.7] There exists a bijection Fac : sτ -tiltA → f-torsA sending
M ∈ sτ -tiltA to FacM .

Now we state the main theorem of this section.

Theorem 4. There exists a bijection sτ -tiltA → fL-sbrickA associating M ∈ sτ -tiltA to
ind(M/radB M), where B = EndA(M).

This map satisfies the following properties. The next proposition gives the way to
calculate the corresponding left finite semibrick explicitly.

Proposition 5. Let M ∈ sτ -tiltA and B := EndA(M). Decompose M as M =
⊕m

i=1Mi

with Mi indecomposable. We define

L := radB M, N := M/L, Li :=
∑

f∈radA(M,Mi)

Im f ⊂ Mi, Ni := Mi/Li

for i = 1, 2, . . . ,m. Then we have the following.

(1) We have L =
⊕m

i=1 Li and N =
⊕m

i=1Ni.
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(2) The module Ni is a brick or zero for each i.
(3) The torsion class T(N) is equal to FacM .
(4) We have indN = {Ni | Ni ̸= 0} ∈ fL-sbrickA.

Especially, it follows that the cardinalities of left finite semibricks are bounded.

Corollary 6. Every S ∈ fL-sbrickA has only |A| elements at most.

We obtain the relationship between the support τ -tilting modules, the left finite semib-
ricks, the functorially finite torsion classes.

Proposition 7. The map T : fL-sbrickA → f-torsA is a bijection, and we have the fol-
lowing commutative diagrams of bijections;

sτ -tiltA f-torsA fL-sbrickA
Fac // Too

M 7→ind(M/radB M)

OO
.

We briefly explain mutations in sτ -tiltA. Let M,N ∈ sτ -tiltA and take P,Q ∈ projA
satisfying the conditions of support τ -tilting modules for M,N , respectively. Then we say
that N is a mutation of M if the pairs (M,P ) and (N,Q) coincide except for exactly one
indecomposable direct summand. For the detail, see [1, Definition 2.19]. By [1, Theorem
2.18], each direct summand of M or P admits a unique mutation. If N is a mutation of
M in sτ -tiltA, then we have FacM ⊋ FacN or FacM ⊊ FacN . In the first case, N is
said to be a left mutation of M .

We have the following detail description of Theorem 4. The equivalence of (c) and (d)
is already shown in [1, Definition-Proposition 2.28].

Proposition 8. Let M ∈ sτ -tiltA and B := EndA(M). Decompose M as M =
⊕m

i=1Mi

with Mi indecomposable, and define Li and Ni as in Proposition 5. Then the following
conditions are equivalent for i = 1, 2, . . . ,m.

(a) The module Ni is a brick.
(b) The module Ni is nonzero.
(c) The module Mi does not belong to Fac

⊕
j ̸=i Mj.

(d) There exists a left mutation of M at Mi in sτ -tiltA.

Especially, the number of left mutations of M is equal to |M/radB M |.

We define the exchange quiver of sτ -tiltA. The vertices are all the elements of sτ -tiltA,
and for any two vertices M and N , there is an arrow from M to N if and only if N is
a left mutation of M , and otherwise there is no arrow from M to N . For any vertex M
with B := EndA(M), the number of arrows from M is |M/radB M |, and the number of
arrows to M is |A| − |M/radB M |. We give an example.

Example 9. Let A be the path algebra of the quiver 1 → 2 → 3. Figure 1 is the exchange
quiver of sτ -tiltA. The bricks in ind(M/radB M) ∈ fL-sbrickA for each M ∈ sτ -tiltA are
denoted by bold letters.
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Figure 1. The exchange quiver of sτ -tiltA

2. Semibricks and 2-term simple-minded collections

In this section, we study how left finite semibricks and right finite semibricks act in the
bounded derived category Db(modA). For this purpose, we first recall the definition of
2-term simple-minded collections in Db(modA). Here, a full subcategory of a triangulated
category is called thick if it is a triangulated subcategory closed under direct summands.

Definition 10. Let X be a set of isomorphic classes of objects in Db(modA). Then X is
called a simple-minded collection in Db(modA) if it satisfies the following conditions;

• for any X ∈ X , EndDb(modA)(X) is a division K-algebra,
• for any X1 ̸= X2 ∈ X , we have HomDb(modA)(X1, X2) = 0,
• for any X1, X2 ∈ X and n < 0, we have HomDb(modA)(X1, X2[n]) = 0,

• the smallest thick subcategory of Db(modA) containing X is Db(modA) itself.

Moreover, a simple-minded collection X in Db(modA) is said to be 2-term if the ith
cohomology H i(X) is 0 for any i ̸= −1, 0 and any X ∈ X . We write 2-smcA for the set
of 2-term simple-minded collections in Db(modA).

For example, the set of isoclasses of simple A-modules is a 2-term simple-minded col-
lection in Db(modA).

Every simple-minded collection X in Db(modA) has exactly |A| elements [6, Lemma
3.3] even if it is not 2-term. If X is 2-term, then every isoclass X ∈ X satisfies X ∈ modA
or X ∈ (modA)[1], see [4, Remark 4.11].

Our first main result in this section is the following theorem.

Theorem 11. There are bijections

? ∩modA : 2-smcA → fL-sbrickA, ?[−1] ∩modA : 2-smcA → fR-sbrickA

given by X 7→ X ∩modA and X 7→ X [−1] ∩modA.
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To understand the background of Theorem 11, we need some other concepts, and they
play an important role in the proof of this theorem.

We first recall the definition of silting objects in the homotopy category Kb(projA).
An object P ∈ Kb(projA) is called a silting object in Kb(projA) if the following condi-

tions are satisfied;

• for any n > 0, we have HomKb(projA)(P, P [n]) = 0,

• the smallest thick subcategory of Kb(projA) containing P is Kb(projA) itself.

A silting object P in Kb(projA) is said to be 2-term if it is isomorphic to some 2-term
complex (· · · → 0 → P−1 → P 0 → 0 → · · · ) in Kb(projA), where P−1 and P 0 are the
−1st and the 0th components, respectively. We write 2-siltA for the set of isoclasses of
basic 2-term silting objects in Kb(projA). It is clear that A and A[1] belong to 2-siltA.
We dually define 2-term cosilting objects in Kb(injA) and a set 2-cosiltA as the set of

isoclasses of basic ones.
Next we recall the definition of intermediate t-structures introduced by Bĕılinson–

Bernstein–Deligne [3].
Let (U ,V) be a pair of additive full subcategories of Db(modA). The pair (U ,V) is

called a t-structure in Db(modA) if it satisfies the following conditions;

• we have U [1] ⊂ U , V [−1] ⊂ V , and HomDb(modA)(U ,V [−1]) = 0,

• for every X ∈ Db(modA), there exists an exact triangle U → X → V → Y [1] in
Db(modA) with U ∈ U and V ∈ V [−1].

For a t-structure (U ,V) in Db(modA), a full subcategory U ∩ V called the heart is an
abelian category [3, Théorème 1.3.6]. Sometimes t-structures with length heart (that is,
their hearts are length categories) are easier to deal with than the other ones, and we will
consider only such t-structures in this paper.

A typical example of t-structures in Db(modA) is given as the standard t-structure
(Ustd,Vstd) defined by cohomologies. It is explicitly written as follows;

Ustd = {X ∈ Db(modA) | H i(X) = 0 (i > 0)},
Vstd = {X ∈ Db(modA) | H i(X) = 0 (i < 0)}.

We say a t-structure (U ,V) in Db(modA) is intermediate with respect to the standard
t-structure (or simply intermediate) if Ustd[1] ⊂ U ⊂ Ustd holds. Note that it is equivalent
to Vstd[1] ⊃ V ⊃ Vstd. We define a set int-t-strA as the set of intermediate t-structures in
Db(modA) with length heart.

Koenig–Yang [6] put together the canonical bijections between the set of simple-minded
collections in Db(modA), the set of silting objects in Kb(projA), and the set of t-structures
in Db(modA) with length heart. Brüstle–Yang [4] showed that these bijections are re-
stricted to the corresponding “2-term” concepts.

Proposition 12. [4, Corollary 4.3] We have the following bijections.

(1) There is a bijection 2-siltA → int-t-strA given by P 7→ (P [>0]⊥, P [<0]⊥), where

P [>0]⊥ = {X ∈ Db(modA) | HomDb(modA)(P,X[n]) = 0 (n > 0)},
P [<0]⊥ = {X ∈ Db(modA) | HomDb(modA)(P,X[n]) = 0 (n < 0)}.
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(2) There exists a bijection int-t-strA → 2-smcA given as follows; each (U ,V) ∈
int-t-strA is sent to the set of isoclasses of simple objects in the heart U ∩ V.

We also need the following proposition to relate concepts in Db(modA) or Kb(projA)
with ones in modA.

Proposition 13. We have the following bijections.

(1) [1, Theorem 3.2] The map 2-siltA ∋ P 7→ H0(P ) ∈ sτ -tiltA is bijective.
(2) [4, Theorem 4.9] We have a bijection (heart)∩modA : int-t-strA → f-torsA defined

by (D≤0,D≥0) 7→ H ∩ modA, where H = D≤0 ∩ D≥0 is the heart. Moreover, this
bijection joins the following commutative diagram of bijections;

2-siltA int-t-strA 2-smcA

sτ -tiltA f-torsA

P 7→(P [>0]⊥,P [<0]⊥)
// simples of heart //

Fac //

H0

��
(heart)∩modA

��
.

With these propositions, Theorem 11 is proved.
We finally obtain our second main theorem in this section. Figure 2 shows some of the

known bijections and our new bijections (arrows with labels in rectangles).

Theorem 14. We have the following assertions.

(1) The diagram in Figure 2 is commutative and all the maps are bijective. In this
diagram, T ∈ f-torsA corresponds to F ∈ f-torf A if and only if (T ,F) is a torsion
pair in modA.

(2) If X ∈ 2-smcA corresponds to S ∈ fL-sbrickA and S ′ ∈ fR-sbrickA, then we have
X = S ∪ S ′[1] and a torsion pair (T(S),F(S ′)) in modA.

sτ –1-tiltA f-torf A fR-sbrickA

2-cosiltA

2-siltA

int-t-strA 2-smcA

sτ -tiltA f-torsA fL-sbrickA

Sub // Foo

H−1

OO

(heart)[−1]∩modA

OO

?[−1] ∩modA

OO

ν

OO I 7→(⊥I[<0],⊥I[>0])

--\\\\\\\\\\
\\\\\\\\\\

\

P 7→(P [>0]⊥,P [<0]⊥)

11cccccccccccccccccccccc

simples of heart //

Fac // Too

H0

��

(heart)∩modA

��

? ∩modA
��

M 7→ ind(M/radB M)

OO

M 7→ ind(socB M)

��

Figure 2. The commutative diagram
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