DERIVED EQUIVALENCES AND SMASH PRODUCTS

HIDETO ASASHIBA

ABSTRACT. Let k and G be a commutative ring and a group, respectively. In the paper [1] (a final form in [2]) we investigated when the orbit categories of a pair of derived equivalent small k-categories with G-actions are derived equivalent. Here we solve the converse problem, which is equivalent to the following problem: Let A and B be G-graded k-categories, and assume that they are derived equivalent. Then under which condition are the smash products A#G and B#G derived equivalent?

Key Words: derived categories, derived equivalences, orbit categories, smash products. 2010 *Mathematics Subject Classification:* Primary 16E35, 16S40; Secondary 18E30.

1. INTRODUCTION

Throughout this note \Bbbk is a commutative ring and G is a group. A covering theory for derived equivalences was developed and applied for derived equivalece classifications of some classes of algebras such as representation-finite self-injective algebras or twisted multifold extensions of piecewise hereditary algebras of tree type. The main tool (in a generalized form) is given by the following theorem:

Theorem 1. Let $(\mathcal{C}, X), (\mathcal{C}', X')$ be k-categories with G-actions. Consider the following conditions.

- (1') There exists a tilting subcategory \mathcal{U} of $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}(\mathcal{C}, X))$ with a G-action Y such that the inclusion $(\mathcal{U}, Y) \hookrightarrow \mathcal{K}^{\mathrm{b}}(\mathrm{prj}(\mathcal{C}, X))$ is extended to a G-equivariant functor and (\mathcal{C}', X') and (\mathcal{U}, Y) are G-equivariantly equivalent.
- (2) The orbit categories C/G and C'/G are derived equivalent.

Then the condition (1') implies (2).

In the above a k-category \mathcal{C} with a G-action $X: G \to \operatorname{Aut}(\mathcal{C}), a \mapsto X_a$ is denoted by (\mathcal{C}, X) and $\mathcal{K}^{\mathrm{b}}(\operatorname{prj}(\mathcal{C}, X))$ denotes the bounded homotopy category of finitely generated projective \mathcal{C} -modules, which is a triangulated k-category with a canonical G-action induced by X. Moreover, if (\mathcal{D}, S) and (\mathcal{E}, T) are k-categories with G-actions, then a G-equivariant functor from (\mathcal{D}, U) to (\mathcal{E}, W) is a pair (F, ϕ) of a functor $F: \mathcal{D} \to \mathcal{E}$ and

The detailed version of this paper will be submitted for publication elsewhere.

This work is partially supported by Grant-in-Aid for Scientific Research 25610003 and 25287001 from JSPS (Japan Society for the Promotion of Science).

a family $\phi = (\phi_a)_{a \in G}$ of natural isomorphisms $\phi_a \colon FU_a \Longrightarrow V_a F$ making the diagram

$$FU_{ba} \xrightarrow{\phi_{ba}} V_{ba}F$$

$$\| \qquad \|$$

$$FU_{b}U_{a} \xrightarrow{\phi_{b}U_{a}} V_{b}FU_{a} \xrightarrow{V_{b}\phi_{a}} V_{b}B_{a}F$$

commutative for all $a, b \in G$, and here (F, ϕ) is called a *G*-equivarant equivalence if *F* is an equivalence. Finally (\mathcal{D}, S) and (\mathcal{E}, T) are said to be *G*-equivariantly equivalent if there exists a *G*-equivarantly equivalence $(\mathcal{D}, S) \to (\mathcal{E}, T)$.

In this note we examine the converse problem:

Problem 1. For k-categories $\mathcal{C}, \mathcal{C}'$ with G-actions, under which condition does a derived equivalence between \mathcal{C}/G and \mathcal{C}'/G yield a derived equivalence between \mathcal{C} and \mathcal{C}' ?

Here we recall the following theorem in [3].

Theorem 2. The orbit category construction and the smash product construction are extended to 2-equivalences (-)/G: G-Cat $\rightarrow G$ -GrCat and (-)#G: G-GrCat $\rightarrow G$ -Cat, respectively, and they are 2-quasi-inveses to each other.

By this theorem Problem 1 is reduced to the following.

Problem 1'. For *G*-graded k-categories $\mathcal{B}, \mathcal{B}'$, under which condition does a derived equivalence between \mathcal{B} and \mathcal{B}' yield a derived equivalence between $\mathcal{B}\#G$ and $\mathcal{B}'\#G$?

Indeed, if this is known, then the obtained condition on $\mathcal{B} := \mathcal{C}/G$ and $\mathcal{B}' := \mathcal{C}'/G$ gives us an answer to Problem 1 because under this condition a derived equivalence between \mathcal{C}/G and \mathcal{C}'/G yields a derived equivalence between $(\mathcal{C}/G)\#G (\simeq \mathcal{C})$ and $(\mathcal{C}'/G)\#G (\simeq \mathcal{C}')$.

Recall the following theorem due to Rickard (the algebra case) and Keller (the category case) [even in the category case it is known that by a recent observation in [4] the k-flatness condition on the category C' is not necessary any more]:

Theorem 3. Let C and C' be k-categories. Then the following are equivalent:

- (1) C and C' are derived equivalent.
- (1") There exists a tilting subcategory \mathcal{U} of $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{C})$ such that \mathcal{C}' and \mathcal{U} are equivalent.

By this theorem we may write $(1') \Leftrightarrow (1) \land (\alpha)$ for some extra condition (α) on *G*-actions. Precisely speaking, our purpose is to know a condition (β) on *G*-gradings on \mathcal{C}/G and \mathcal{C}'/G such that $(1) \land (\alpha) \Leftrightarrow (2) \land (\beta)$.

Throughout the rest of this paper all categories and functors are assumed to be klinear, and we call a category with a *G*-action a *G*-category for short. For a category \mathcal{C} we denote by prj \mathcal{C} and mod \mathcal{C} the category of finitely generated \mathcal{C} -modules and the category of finitely generated \mathcal{C} -modules. By $\mathcal{C}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{C})$ we denote the category of bounded complexes in prj \mathcal{C} and its homotopy category is denoted by $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{C})$.

2. The 2-category G-GrCat and equivalences in it

Definition 4. *G***-GrCat** is a 2-category defined as follows.

Objects: (G-**GrCat** $)_0$ is the class of *G*-graded small categories.

1-morphims: Let $\mathcal{B}, \mathcal{A} \in (G\text{-}\mathbf{GrCat})_0$. Then

$$G\text{-}\mathbf{GrCat}(\mathcal{B},\mathcal{A}) := \{ (H,r) \mid H \colon \mathcal{B} \to \mathcal{A} \text{ is a functor}, r \colon \mathcal{B}_0 \to G \text{ is a map with} \\ H(\mathcal{B}^a(x,y)) \subseteq \mathcal{A}^{r(y)^{-1}ar(x)}(Hx,Hy) \ (x,y \in \mathcal{B}_0, a \in G) \}$$

Those (H, r) are called (weakly) degree-preserving functors.

2-morphisms: Let $(H, r), (I, s): \mathcal{B} \to \mathcal{A}$ be degree-preserving functors. Then a natural transformation $\theta: H \Longrightarrow I$ is called a *morphism* of degree-preserving functors if $\theta x \in \mathcal{A}^{s_x^{-1}r_x}(Hx, Ix)$ for all $x \in \mathcal{B}$.

Compositions of 1-morphisms: Let $\mathcal{B} \xrightarrow{(H,r)} \mathcal{B}' \xrightarrow{(H',r')} \mathcal{B}''$ be degree-preserving functors. Then

$$(H'H, (r_xr'_{Hx})_{x\in\mathcal{B}})\colon \mathcal{B}\to\mathcal{B}''$$

is also a degree-preserving functor, which we define to be the *composite* (H', r')(H, r) of (H, r) and (H', r').

Vertical and horizontal compositions of 2-morphisms: These are given by the usual ones of natural transformations.

Definition 5. Let \mathcal{A} be a category and \mathcal{B} a *G*-graded category.

- (1) Let $E, F: \mathcal{A} \to \mathcal{B}$ be functors. Then a natural transformation $\varepsilon: E \Rightarrow F$ is called homogeneous if $\varepsilon_x: Ex \to Fx$ are homogeneous in \mathcal{B} for all $x \in \mathcal{A}_0$.
- (2) Let \mathcal{S} be a subclass of \mathcal{B}_0 and \mathcal{B}' a full subcategory of \mathcal{B} with $\mathcal{B}'_0 = \mathcal{S}$. Then \mathcal{S} (or \mathcal{B}') is said to be *homogeneously dense* in \mathcal{B} if for each $x \in \mathcal{B}_0$ there exists an $x' \in \mathcal{S}$ such that there exists a homogeneous isomorphism $x \to x'$.
- (3) A functor $F: \mathcal{A} \to \mathcal{B}$ is said to be homogeneously dense if the object class $F(\mathcal{A}_0)$ is homogeneously dense in \mathcal{B} .

Example 6. Let \mathcal{B} be a *G*-graded category. If $\mathcal{B}(x, x)$ are local k-algebras for all $x \in \mathcal{B}_0$, then any dense full subcategory \mathcal{B}' of \mathcal{B} is homogeneously dense.

Theorem 7. Let $(H, r): \mathcal{B} \to \mathcal{A}$ be a degree-preserving functor in G-GrCat. Then the following are equivalent.

- (1) (H, r) is an equivalence in G-GrCat.
- (2) $H: \mathcal{B} \to \mathcal{A}$ is a category equivalence with a quasi-inverse I as a left adjoint both of whose counit $\varepsilon: IH \Rightarrow \mathbb{1}_{\mathcal{A}}$ and unit $\eta: \mathbb{1}_{\mathcal{B}} \Rightarrow HI$ are homogeneous natural isomorphisms.
- (3) H is fully faithful and homogeneously dense.

Proposition 8. Let $\mathcal{B}, \mathcal{A} \in G$ -GrCat₀. Then the following are equivalent.

- (1) $\mathcal{B} \simeq \mathcal{A}$ in G-GrCat.
- (2) There exist homogeneously dense full subcategories \mathcal{B}' and \mathcal{A}' of \mathcal{B} and \mathcal{A} , respectively such that $\mathcal{B}' \cong \mathcal{A}'$ in G-GrCat.

3. G-gradable complexes

Definition 9. Let \mathcal{B} be a *G*-graded category.

- (1) A complex $X^{\bullet} = (X^n, d_X^n)_{n \in \mathbb{Z}}$ of \mathcal{B} -modules is called *G*-graded if for each $n \in \mathbb{Z}$, $X^n = (X^n, W_{X^n})$ is a *G*-graded \mathcal{B} -module with a decomposition $W_{X^n} : X^n = \bigoplus_{a \in G} X_a^n$ as k-modules, and $d_X^n : X^n \to X^{n+1}$ is *G*-degree-preserving, i.e., $d_X^n(X_a^n) \subseteq X_a^{n+1}$ for all $a \in G$.
- (2) A morphism $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$ in the category $\mathcal{C}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$ is called *G*-degree-preserving if for each $n \in \mathbb{Z}$ the component map $f^n: X^n \to Y^n$ of f^{\bullet} is *G*-degree-preserving.
- (3) By $\mathcal{C}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})_G$ we denote the category of *G*-graded complexes and *G*-degree-preserving morphisms.
- (4) We set $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})_G$ to be the factor category of $\mathcal{C}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})_G$ by the homotopy relation given by *G*-degree-preserving morphisms, and by Fgt: $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})_G \to \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$ the forgetful functor $(X^n, W_{X^n}, d_X^n)_n \mapsto (X^n, d_X^n)_n$.
- (5) A complex $X^{\bullet} \in \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$ is called *G-gradable* if there exists a complex $Y^{\bullet} \in \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})_{G}$ such that $X^{\bullet} \cong \mathrm{Fgt}(Y^{\bullet})$ in $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$.

We cite the following from [1] (see that paper also for terminologies not defined here).

Theorem 10. Let \mathcal{C} be a *G*-category, and $P: \mathcal{C} \to \mathcal{C}/G$ the canonical *G*-covering functor. Then the pushdwon functor $P: \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{C}) \to \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{C}/G)$ factors through Fgt with an equivalence P':

Let \mathcal{B} be a *G*-graded category. Then the canonical *G*-covering $Q: \mathcal{B}\#G \to \mathcal{B}$ is the composite of the canonical *G*-covering $\mathcal{B}\#G \to (\mathcal{B}\#G)/G$ and a degree-preserving equivalence $\omega'_{\mathcal{B}} = (\omega'_{\mathcal{B}}, r_{\mathcal{B}}): (\mathcal{B}\#G)/G \to \mathcal{B}$, which is an equivalence in *G*-**GrCat**. Using this fact we have the following.

Corollary 11. Let \mathcal{B} be a *G*-graded category, and $Q: \mathcal{B}\#G \to \mathcal{B}$ the canonical *G*-covering functor. Then the pushdwon functor $Q: \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B}\#G) \to \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$ factors through Fgt with an equivalence $Q'_{::}$

The following is immediate from the above.

Corollary 12. In the setting above let \mathcal{P} be a set of G-gradable complexes in $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$. Then the pushdown Q. restricts to a G-covering functor $Q_{\cdot}|_{\mathcal{U}} : \mathcal{U} \to \mathcal{P}$, where \mathcal{U} is the full subcategory of $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B}\# G)$ consisting of those $U^{\cdot} \in \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B}\# G)$ such that $P_{\cdot}(U^{\cdot}) \cong X^{\cdot}$ for some $X^{\cdot} \in \mathcal{P}$.

Remark 13. In the above, for each $X^{\bullet} \in \mathcal{P}$ fix a $U^{\bullet}(X^{\bullet}) \in \mathcal{U}$ with $P_{\bullet}(U^{\bullet}(X^{\bullet})) \cong X^{\bullet}$, then the covering functor $Q_{\bullet}|_{\mathcal{U}}$ above defines a *G*-grading on \mathcal{P} as follows. For each $X^{\bullet}, Y^{\bullet} \in \mathcal{P}$, Q_{\cdot} yields the canonical isomorphism

$$Q_{\bullet}^{(1)} \colon \bigoplus_{a \in G} \mathcal{U}(aU^{\bullet}(X^{\bullet}), U^{\bullet}(Y^{\bullet})) \to \mathcal{P}(X^{\bullet}, Y^{\bullet}),$$

which gives us a *G*-grading $\mathcal{P}(X^{\boldsymbol{\cdot}}, Y^{\boldsymbol{\cdot}}) = \bigoplus_{a \in G} \mathcal{P}^a(X^{\boldsymbol{\cdot}}, Y^{\boldsymbol{\cdot}})$ on \mathcal{P} by setting $\mathcal{P}^a(X^{\boldsymbol{\cdot}}, Y^{\boldsymbol{\cdot}}) := Q^{(1)}_{\boldsymbol{\cdot}}(\mathcal{U}(aU^{\boldsymbol{\cdot}}(X^{\boldsymbol{\cdot}}), U^{\boldsymbol{\cdot}}(Y^{\boldsymbol{\cdot}}))).$

4. Results

We have the following results.

Theorem 14. Let $(\mathcal{B}, W), (\mathcal{B}', W')$ be G-graded categories. Consider the following conditions.

- There exists a tilting subcategory *P* of K^b(prj(*B*, W)) consisting of G-gradable complexes with a G-grading V defined as in Remark 13 such that the inclusion (*P*, V) → K^b(prj(*B*, W)) is extended to an equivariance in G-GrCat, and (*B'*, W') and (*P*, V) are equivariant in G-GrCat.
- (2) The smash products $\mathcal{B}\#G$ and $\mathcal{B}'\#G$ are derived equivalent.

Then the condition (1) implies (2).

A *G*-covering $(F, \psi) : \mathcal{C} \to \mathcal{B}$ from a *G*-category \mathcal{C} to a *G*-graded category \mathcal{B} is said to induce a degree-preserving functor with a map $r : \mathcal{C}_0 \to G$ if (F, ψ) is the composite of the canonical *G*-covering $(P, \phi) : \mathcal{C} \to \mathcal{C}/G$ and some equivalence $H : \mathcal{C}/G \to \mathcal{B}$ such that $(H, r) : \mathcal{C}/G \to \mathcal{B}$ is degree-preserving.

Theorem 15. Let C = (C, X), C' = (C', X') be G-categories, $\mathcal{B} = (\mathcal{B}, W), \mathcal{B}' = (\mathcal{B}', W')$ G-graded categories and $(F, \psi) \colon C \to \mathcal{B}, (F', \psi') \colon C' \to \mathcal{B}'$ G-coverings inducing degreepreserving functors. Then the following are equivalent:

- (1) There exists a tilting subcategory \mathcal{U} of $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{C})$ and a G-action Y on \mathcal{U} such that the inclusion $(\mathcal{U}, Y) \hookrightarrow \mathcal{K}^{\mathrm{b}}(\mathrm{prj}(\mathcal{C}, X))$ is extended to a G-equivariant functor, and (\mathcal{C}', X) and (\mathcal{U}, Y) are G-equivariantly equivalent.
- (2) There exists a tilting subcategory \mathcal{P} of $\mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$ consisting of G-gradable complexes and a G-grading V of \mathcal{P} induced by (F,ψ) such that the inclusion $(\mathcal{P},V) \hookrightarrow \mathcal{K}^{\mathrm{b}}(\mathrm{prj}\,\mathcal{B})$ is extended to a degree-preserving functor, and (\mathcal{B}',W') and (\mathcal{P},V) are equivalent in G-GrCat.

References

- Asashiba, H.: A generalization of Gabriel's Galois covering functors and derived equivalences, J. Algebra 334 (2011), no. 1, 109–149.
- [2] Asashiba, H.: Gluing derived equivaleces together, Adv. Math. 235 (2013) 134-160.
- [3] Asashiba, H.: A generalization of Gabriel's Galois covering functors II: 2-categorical Cohen-Montgomery duality, to appear in Applied Categorical Structures, DOI: 10.1007/s10485-015-9416-9.
- [4] Dugger, D. and Shipley, B.: K-theory and derived equivalences, Duke Math. J. 124 (2004), no. 3, 587–617.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SHIZUOKA UNIVERSITY 836 OHYA, SURUGA-KU, SHIZUOKA, 422-8529, JAPAN *E-mail address*: asashiba.hideto@shizuoka.ac.jp