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Abstract. Let k be an algebraically closed field of characteristic 0, A a graded k-
algebra finitely generated in degree 1 and V a k-vector space. For the 3-dimensional
quadratic AS-regular algebra A, we consider the following two conjectures: (I) there exist
a superpotential w ∈ V ⊗3 and an automorphism τ of V such that A and the derivation-
quotient algebra D(wτ ) of wτ are isomorphic as graded algebras; (II) there exists a
Calabi-Yau AS-regular algebra C such that A and C are graded Morita equivalent. In
this talk, we give partial results for the above two conjectures.

1. AS-regular algebras and geometric algebras

Through this report, let k be an algebraically closed field of characteristic 0, A a graded
k-algebra finitely generated in degree 1. That is, A = T (V )/I, where V is a k-vector space,
T (V ) is the tensor algebra of V and I is a two-sided ideal of T (V ) with I0 = I1 = 0.

Artin and Schelter [1] defined certain regular algebras (called Artin-Schelter regular
algebras later). Moreover, Artin, Tate and Van den Bergh [2] classified Artin-Schelter
regular algebras of global dimension 3 by geometry. First, we recall the definition of
Artin-Schelter regular algebras as follows:

Definition 1. ([1]) Let A be a noetherian connected graded k-algebra. A is called a d-
dimensional Artin-Schelter regular (simply AS-regular) algebra if A satisfies the following
conditions:

(i) gldimA = d <∞,
(ii) GKdimA := inf{α ∈ R | dimk(

∑n
i=0Ai) ≤ nα for all n ≫ 0} < ∞, called the

Gelfand-Kirillov dimension of A,

(iii) (Gorenstein condition) ExtiA(k,A) =

{
k (i = d),
0 (i ̸= d).

For example, let A is a grade k-algebra

k⟨x, y, z⟩/(yz − αzy, zx− βxz, xy − γyx) (αβγ ̸= 0).

Then, A is a 3-dimensional AS-regular algebra. For another example, if A is a graded
commutative algebra, A is n-dimensional AS-regular if and only if A is isomorphic to a
polynomial ring k[x1, . . . , xn].

Next, we recall the definition of Koszul algebras.
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Definition 2. Let A be a graded k-algebra. A graded A-moduleM has a linear resolution
if a free resolution of M is as follows:

· · · −→
⊕

A(−3) −→
⊕

A(−2) −→
⊕

A(−1) −→
⊕

A −→M −→ 0.

A graded k-algebra A is called Koszul when k has a linear resolution.

Remark 3. If A is a Koszul algebra, then A = T (V )/(R) is quadratic, where R ⊂ V ⊗k V .
Moreover, the Ext algebra (the Yoneda algebra) of A Ext∗A(k, k)

∼= A! := T (V ∗)/(R⊥)
is Koszul, and A! is called the Koszul dual of A, where V ∗ is the dual space of a finite-
dimensional k-vector space V , and R⊥ := {f ∈ V ∗ ⊗k V

∗ | f(R) = 0}.

For example, let A be a graded k-algebra

k⟨x, y, z⟩/(yz − αzy, zx− βxz, xy − γyx).

Then, the Koszul dual A! of A is

k⟨x, y, z⟩/(x2, y2, z2, αyz + zy, βzx+ xz, γxy + yx) (α, β, γ ∈ k\{0}).

For Koszul algebras, by using Koszul duality, Smith [8] proved a relationship between
AS-regular Koszul algebras and Frobenius Koszul algebras.

Theorem 4. ([8, Proposition 5.10]) Let A be a connected graded Koszul k-algebra. Then
A is Koszul AS-regular if and only if the Koszul dual A! is Frobenius and the complexity
of k is finite.

We remark that, in Theorem 4, for a d-dimensional AS-regular Koszul algebra A and
the Frobenius Koszul algebra A!, gldimA ≤ d and GKdimA = l < ∞ correspond to
(radA!)d+1 = 0 and cx(A!/radA!) = cx(k) = l <∞, respectively. For example,

A = k⟨x, y, z⟩/(yz − αzy, zx− βxz, xy − γyx) (αβγ ̸= 0)

is a 3-dimensional AS-regular Koszul algebra. Moreover,

A! = k⟨x, y, z⟩/(x2, y2, z2, αyz + zy, βzx+ xz, γxy + yx) (α, β, γ ∈ k\{0})

is a Frobenius Koszul algebra.
Now, we consider a homogeneous ideal I of k⟨x1, . . . , xn⟩ generated by degree 2 ho-

mogeneous polynomials, that is, we treat a quadratic algebra. When a graded k-algebra
A = k⟨x1, . . . , xn⟩/I is quadratic, we set

ΓA := {(p, q) ∈ Pn−1 × Pn−1 | f(p, q) = 0 for all f ∈ I2}.

I.Mori [5] introduced a geometric algebra over k as follows.

Definition 5. ([5]) Let A = k⟨x1, . . . , xn⟩/I be a quadratic k-algebra.

(i) A satisfies (G1) if there exists a pair (E, σ) where E is a closed k-subscheme of Pn−1

and σ ∈ AutE such that

ΓA = {(p, σ(p)) ∈ Pn−1 × Pn−1 | p ∈ E}.

In this case, we write P(A) = (E, σ) called the geometric pair of A.
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(ii) A satisfies (G2) if there exists a pair (E, σ) where E is a closed k-subscheme of Pn−1

and σ ∈ AutE such that

I2 = {f ∈ k⟨x1, . . . , xn⟩2 | f(p, σ(p)) = 0, for all p ∈ E}.
In this case, we write A = A(E, σ).

(iii) A is called geometric if A satisfies both (G1) and (G2), and A = A(P(A)).

Note that, if A satisfies (G1), A determines the pair (E, σ) by using ΓA. Conversely, if
A satisfies (G2), A is determined by the pair (E, σ).

In this research, we consider 3-dimensional quadratic AS-regular algebras. These are
classified by Artin-Tate-Van den Bergh [2] using a geometric pair (E, σ), where E is a
cubic curve of P2 and σ is an automorphism of E.

Theorem 6. ([2]) Every 3-dimensional quadratic AS-regular algebra A is geometric.
Moreover, when P(A) = (E, σ), E is either the projective plane P2 or a cubic divisor
in P2 as follows.

(elliptic curve)

(cuspidal curve)

(nodal curve)

(double line) (triple line)

2. Calabi-Yau algberas and superpotentials

Note that a 3-dimensional quadratic AS-regular algebra is Koszul, and that the qua-
dratic dual A! of A is a Frobenius algebra by Theorem 4. Then, the Nakayama automor-
phism of A! is identity if and only if A is a Calabi-Yau algebra ([7]). Here, the definition
of Calabi-Yau algebras is as follows:

Definition 7. ([4]) Let A be a connected graded noetherian k-algebra A is called d-
dimensional Calabi-Yau if A satisfies the following conditions:

(i) pdAeA = d <∞,

(ii) ExtiAe(A,Ae) =

{
A if i = d,

0 if i ̸= d,

where Ae = A⊗k A
op: the enveloping algebra of A.

Using a geometric pair (E, σ) classified by 6, we determine the algebras A = A(E, σ).
Then, we investigate whether these algebras A are graded Morita equivalent to Calabi-Yau
AS-regular algebras or not.

Now, we give the definition of a superpotential:
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Definition 8. ([3], [6]) For a finite-dimensional k-vector space V , we define the k-linear
map φ: V ⊗3 −→ V ⊗3 by

ϕ(v1 ⊗ v2 ⊗ v3) := v3 ⊗ v1 ⊗ v2.

If ϕ(w) = w for w ∈ V ⊗3, then w is called superpotential. Also, for τ ∈ GL(V ), we define

wτ := (τ 2 ⊗ τ ⊗ id)(w),

where GL(V ) is the general linear group of V .
Moreover, for a finite-dimensional k-vector space V and a subspace W of V ⊗3, we set

• ∂W := {(ψ ⊗ id⊗2)(w) | ψ ∈ V ∗, w ∈ W},
• D(W ) := T (V )/(∂W ).

For w ∈ V ⊗3, D(w) := D(kw) is called the derivation-quotient algebra of w.

3. Main results and examples

In this research, our aim is to solve the following two conjectures:

Conjecture For every 3-dimensional quadratic AS-regular algebra A,

(I): there exists a superpotential w ∈ V ⊗3 and an automorphism τ of V such that A
and the derivation-quotient algebraD(wτ ) of wτ are isomorphic as graded algebras;

(II): there exists a Calabi-Yau AS-regular algebra C such that A and C are graded
Morita equivalent.

Our main result is to give partial results for the above two conjectures.

Theorem 9. For the 3-dimensional quadratic AS-regular algebra A = A(E, σ) corre-
sponding to E and σ ∈ AutE, suppose that E is P2 or the cubic curve of P2 as follows:
Then, the following (I) and (II) hold:

(I): there exist a superpotential w ∈ V ⊗3 and an automorphism τ of V such that A
and the derivation-quotient algebra D(wτ ) of wτ are isomorphic as graded algebras;

(II): there exists a Calabi-Yau AS-regular algebra C such that A and C are graded
Morita equivalent.

Example 10. Suppose that (E, σ) is a geometric pair where E is a union of three lines
making a triangle in P2 and σ ∈ AutE stabilizes each component. That is, E = V(xyz)
and 

σ(V(x)) = V(x),
σ(V(y)) = V(y),
σ(V(z)) = V(z).

Considering A = A(E, σ) corresponding to E and σ ∈ AutE, A = k⟨x, y, z⟩/(yz −
αzy, zx− βxz, xy − γyx) is 3-dimensional quadratic AS-regular (α, β, γ ∈ k\{0}).
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For λ := 3
√
αβγ ∈ k\{0}, we take a superpotential w as

w = (xyz + yzx+ zxy)− λ(zyx+ yxz + xzy).

Also, we take τ :=

 3
√
βγ−1 0 0

0 3
√
γα−1 0

0 0 3
√
αβ−1

 ∈ GL (3, k). Then, wτ is as follows:

wτ = (τ 2 ⊗ τ ⊗ id)(w)

= 3
√
α−1β2γ−1xyz + 3

√
α−1β−1γ2yzx+ 3

√
α2β−1γ−1zxy

− 3
√
α2β−1γ2zyx− 3

√
α−1β2γ2yxz − 3

√
α2β2γ−1xzy.

Therefore, the derivation-quotient algebra D(wτ )

D(wτ ) = k⟨x, y, z⟩/(yz − αzy, zx− βxz, xy − γyx)

and we have a graded k-algebra isomorphism A ∼= D(wτ ) (Conjecture (I)).
Moreover, A is equivalent to the Calabi-Yau AS-regular algebra

C = k⟨x, y, z⟩/(yz − λzy, zx− λxz, xy − λyx)

as graded Morita equivalent (Conjecture (II)).

Example 11. Suppose that (E, σ) is a geometric pair where E is a union of three lines
meeting at one point in P2 and σ ∈ AutE interchange two of its components. That is,
E = V(xyz) and 

σ(V(x)) = V(y),
σ(V(y)) = V(x),
σ(V(z)) = V(z).

ConsideringA = A(E, σ) corresponding to (E, σ), A = k⟨x, y, z⟩/(f1, f2, f3) is 3-dimensional

quadratic AS-regular, where

 f1 = x2 − y2,
f2 = xz − zy − βxy + (β − γ)y2,
f3 = yz − zx− αyx+ (α− γ)x2

(α, β, γ ∈ k\{0}).

For λ :=
1

3
(α + β − γ) ∈ k\{0}, we take a superpotential w as

w : = (xyz + yzx+ zxy)− (zyx+ yxz + xzy)

+ λ(x2y + xyx+ yx2)− λ(xy2 + y2x+ yxy).

Also, we take τ :=

 0 −1 0
−1 0 0

1

3
(−α+ 2β − γ)

1

3
(2α− β − γ) −1

 ∈ GL (3, k). Therefore,

we have a graded k-algebra isomorphism A ∼= D(wτ ) (Conjecture (I)).
Moreover, A is equivalent to the Calabi-Yau AS-regular algebra

C = k⟨x, y, z⟩/(g1, g2, g3)
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as graded Morita equivalent, where g1 = yz − zy + λ(xy + yx− y2),
g2 = zx− xz + λ(x2 − yx− xy),
g3 = xy − yx.

(Conjecture (II)).
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