How to capture t-structures by silting theory

Takahide Adachi and Yuya Mizuno (joint work with Dong Yang)

Osaka Prefecture University and Shizuoka University (Nanjing University)

10th October 2017

Adachi and Mizuno (j.w. with Yang)

How to capture *t*-structures

Aim

Understand bounded *t*-structures by silting objects.

Adachi and Mizuno (j.w. with Yang)

How to capture t-structures

э

Silting object

 $\mathcal{T}:$ triangulated category with shift functor [1] M: object of \mathcal{T}

Definition [Keller-Vossieck (1988)]

 $M: \text{ silting object of } \mathcal{T}:\Leftrightarrow$

• $\operatorname{Hom}_{\mathcal{T}}(M, M[\forall i > 0]) = 0$ ($\Leftrightarrow: M: \text{ presilting}$)

• $\mathcal{T} = \operatorname{thick} M$

 $\operatorname{silt}\mathcal{T}$: the set of isoclasses of basic silting objects of $\mathcal T$

Example

 $\begin{array}{l} \Lambda: \mbox{ finite dimensional algebra over a filed} \\ \Longrightarrow \Lambda \mbox{ is a silting object of } \mathsf{K}^{\mathrm{b}}(\mathsf{proj}\Lambda). \end{array}$

Adachi and Mizuno (j.w. with Yang)

How to capture *t*-structures

Silting object

 $\mathcal{T}:$ triangulated category with shift functor [1] M: object of \mathcal{T}

Definition [Keller-Vossieck (1988)]

 $M: \text{ silting object of } \mathcal{T}:\Leftrightarrow$

• $\operatorname{Hom}_{\mathcal{T}}(M, M[\forall i > 0]) = 0$ ($\Leftrightarrow: M: \text{ presilting}$)

• $\mathcal{T} = \operatorname{thick} M$

 $\operatorname{silt} \mathcal{T} {:}$ the set of isoclasses of basic silting objects of \mathcal{T}

Example

 $\begin{array}{l} \Lambda: \mbox{ finite dimensional algebra over a filed} \\ \Longrightarrow \Lambda \mbox{ is a silting object of } \mathsf{K}^{\mathrm{b}}(\mathsf{proj}\Lambda). \end{array}$

Adachi and Mizuno (j.w. with Yang)

t-structure

 $\begin{array}{l} \mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0} \text{: full subcategories of } \mathcal{T} \text{ closed under isom.} \\ \mathcal{T}^{\leq n} := \mathcal{T}^{\leq 0}[-n], \ \mathcal{T}^{\geq n} := \mathcal{T}^{\geq 0}[-n] \ (n \in \mathbb{Z}) \end{array}$

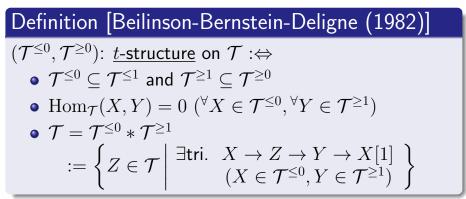
Definition [Beilinson-Bernstein-Deligne (1982)] $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$: <u>t-structure</u> on $\mathcal{T} :\Leftrightarrow$ • $\mathcal{T}^{\leq 0} \subseteq \mathcal{T}^{\leq 1}$ and $\mathcal{T}^{\geq 1} \subseteq \mathcal{T}^{\geq 0}$ • Hom_{\mathcal{T}} $(X, Y) = 0 (\forall X \in \mathcal{T}^{\leq 0}, \forall Y \in \mathcal{T}^{\geq 1})$ • $\mathcal{T} = \mathcal{T}^{\leq 0} * \mathcal{T}^{\geq 1}$ $:= \left\{ Z \in \mathcal{T} \middle| \begin{array}{c} \exists tri. \ X \to Z \to Y \to X[1] \\ (X \in \mathcal{T}^{\leq 0}, Y \in \mathcal{T}^{\geq 1}) \end{array} \right\}$

The heart $\mathcal{T}^0 := \mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$ is abelian

Adachi and Mizuno (j.w. with Yang)

t-structure

 $\begin{array}{l} \mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0} \text{: full subcategories of } \mathcal{T} \text{ closed under isom.} \\ \mathcal{T}^{\leq n} := \mathcal{T}^{\leq 0}[-n], \ \mathcal{T}^{\geq n} := \mathcal{T}^{\geq 0}[-n] \ (n \in \mathbb{Z}) \end{array}$



The heart $\mathcal{T}^0 := \mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$ is abelian.

Adachi and Mizuno (j.w. with Yang)

Bounded *t*-structure

Definition

$$\begin{array}{l} (\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0}) \text{:} \ \underline{\text{bounded}} :\Leftrightarrow \mathcal{T} = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^{\leq n} = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^{\geq n} \\ \Leftrightarrow \mathcal{T} = \operatorname{thick} \mathcal{T}^{0} \end{array}$$

$\mathit{t}\text{-}\mathrm{str}_{\mathrm{bd}}\mathcal{T}\text{:}$ the set of bounded $\mathit{t}\text{-}\mathsf{structures}$ on \mathcal{T}

Example

$$\begin{split} \Lambda: \text{ finite dimensional algebra over a field} \\ \mathcal{D} &:= \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda): \text{ the bounded derived category} \\ \Longrightarrow (\mathcal{D}_{\Lambda}^{\leq 0}, \mathcal{D}_{\Lambda}^{\geq 0}) \text{ is a bounded } t\text{-structure on } \mathcal{D}. \\ \mathcal{D}_{\Lambda}^{\leq 0} &:= \{X \in \mathcal{D} \mid H^{\forall i > 0}(X) = 0\} \\ &= \{X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(\Lambda, X[^{\forall}i > 0]) = 0\} \end{split}$$

Bounded *t*-structure

Definition

$$\begin{array}{l} (\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0}) \text{:} \ \underline{\text{bounded}} :\Leftrightarrow \mathcal{T} = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^{\leq n} = \bigcup_{n \in \mathbb{Z}} \mathcal{T}^{\geq n} \\ \Leftrightarrow \mathcal{T} = \text{thick} \mathcal{T}^{0} \end{array}$$

 $\mathit{t}\text{-}\mathrm{str}_{\mathrm{bd}}\mathcal{T}\text{:}$ the set of bounded $\mathit{t}\text{-}\mathsf{structures}$ on \mathcal{T}

Example

$$\begin{split} \Lambda: \text{ finite dimensional algebra over a field} \\ \mathcal{D} &:= \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda): \text{ the bounded derived category} \\ \Longrightarrow (\mathcal{D}_{\Lambda}^{\leq 0}, \mathcal{D}_{\Lambda}^{\geq 0}) \text{ is a bounded } t\text{-structure on } \mathcal{D}. \\ \mathcal{D}_{\Lambda}^{\leq 0} &:= \{X \in \mathcal{D} \mid H^{\forall i > 0}(X) = 0\} \\ &= \{X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(\Lambda, X[^{\forall}i > 0]) = 0\} \end{split}$$

Silting objects and *t*-structures

 $\begin{array}{l} \Lambda: \text{ finite dimensional algebra over a field} \\ \mathcal{C}:=\mathsf{K}^b(\mathsf{proj}\Lambda) \text{ and } \mathcal{D}:=\mathsf{D}^b(\mathsf{mod}\Lambda) \end{array}$

- Λ is a silting object of C.
- $(\mathcal{D}^{\leq 0}_{\Lambda}, \mathcal{D}^{\geq 0}_{\Lambda})$ is a bounded *t*-structure on \mathcal{D} .

Theorem [Koenig-Yang (2014)]

• $\exists \text{injection silt} \mathcal{C} \to t \text{-str}_{\mathrm{bd}} \mathcal{D} \quad (M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0}))$ • $\mathcal{D}_M^{\leq 0} \cap \mathcal{D}_M^{\geq 0} \simeq \text{mod End}_{\mathcal{D}}(M)$

$\mathcal{D}_M^{\leq 0} := \{ X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(M, X[^{\forall}i > 0]) = 0 \}$ $\mathcal{D}_M^{\geq 0} := \{ X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(M, X[^{\forall}i < 0]) = 0 \}$

Silting objects and *t*-structures

 $\begin{array}{l} \Lambda: \text{ finite dimensional algebra over a field} \\ \mathcal{C}:=\mathsf{K}^b(\mathsf{proj}\Lambda) \text{ and } \mathcal{D}:=\mathsf{D}^b(\mathsf{mod}\Lambda) \end{array}$

•
$$\Lambda$$
 is a silting object of C .

• $(\mathcal{D}^{\leq 0}_{\Lambda}, \mathcal{D}^{\geq 0}_{\Lambda})$ is a bounded *t*-structure on \mathcal{D} .

Theorem [Koenig-Yang (2014)]

• [∃]injection silt
$$\mathcal{C} \to t$$
-str_{bd} \mathcal{D} $(M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0}))$
• $\mathcal{D}_M^{\leq 0} \cap \mathcal{D}_M^{\geq 0} \simeq \operatorname{mod} \operatorname{End}_{\mathcal{D}}(M)$

$$\mathcal{D}_M^{\leq 0} := \{ X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(M, X[^{\forall}i > 0]) = 0 \}$$
$$\mathcal{D}_M^{\geq 0} := \{ X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(M, X[^{\forall}i < 0]) = 0 \}$$

ST-pair (S=silting object, T=t-structure)

 $\mathcal{T} \text{: Hom-fintie Krull-Schmidt triangulated category } \\ \mathcal{C}, \mathcal{D} \text{: thick subcateogories of } \mathcal{T} \\ \end{cases}$

Definition

$$\begin{array}{l} (\mathcal{C},\mathcal{D}) \colon \underline{\mathsf{ST-pair}} \text{ inside } \mathcal{T} :\Leftrightarrow {}^{\exists}M \colon \text{ silting object of } \mathcal{C} \text{ s.t.} \\ (1) \ (\mathcal{T}_M^{\leq 0},\mathcal{T}_M^{\geq 0}) \colon t \text{-structure on } \mathcal{T} \\ (2) \ \mathcal{T}_M^{\geq 0} \subseteq \mathcal{D} \\ (3) \ \mathcal{D} = \text{thick} \mathcal{T}_M^0 \\ \text{The triple } (\mathcal{C},\mathcal{D},M) \text{ is called a ST-triple inside } \mathcal{T}. \end{array}$$

$$\mathcal{T}_{M}^{\leq 0} := \{ X \in \mathcal{T} \mid \operatorname{Hom}_{\mathcal{T}}(M, X[\forall i > 0]) = 0 \}$$

$$\mathcal{T}_{M}^{\geq 0} := \{ X \in \mathcal{T} \mid \operatorname{Hom}_{\mathcal{T}}(M, X[\forall i < 0]) = 0 \}$$

Example of ST-pair

Example 1

 $\begin{array}{l} \Lambda: \mbox{ finite dimensional algebra over a field } k \\ \Longrightarrow (\mathsf{K}^{\mathrm{b}}(\mathsf{proj}\Lambda),\mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda)): \mbox{ ST-pair inside } \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda) \end{array}$

Example 2 [Amiot (2009), Kalck-Yang (2016)]

Γ : dg k-algebra satisfying

- $H^p(\Gamma) = 0 (\forall p > 0)$
- $H^0(\Gamma)$: finite dimensional
- $\mathsf{D}_{fd}(\Gamma) \subseteq \mathsf{per}(\Gamma)$

 $\implies (\mathsf{per}(\Gamma), \mathsf{D}_{\mathrm{fd}}(\Gamma))$: ST-pair inside $\mathsf{per}(\Gamma)$

Example of ST-pair

Example 1

 $\begin{array}{l} \Lambda: \mbox{ finite dimensional algebra over a field } k \\ \Longrightarrow (\mathsf{K}^{\mathrm{b}}(\mathsf{proj}\Lambda),\mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda)): \mbox{ ST-pair inside } \mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda) \end{array}$

Example 2 [Amiot (2009), Kalck-Yang (2016)]

 Γ : dg k-algebra satisfying

•
$$H^p(\Gamma) = 0 (\forall p > 0)$$

- $H^0(\Gamma)$: finite dimensional
- $\mathsf{D}_{fd}(\Gamma) \subseteq \mathsf{per}(\Gamma)$

 $\implies (\mathsf{per}(\Gamma),\mathsf{D}_{\mathrm{fd}}(\Gamma)) \text{: ST-pair inside }\mathsf{per}(\Gamma)$

Image: A matrix and a matrix

Property of ST-pair

$$\begin{array}{l} (\mathcal{C},\mathcal{D}) \colon \underline{\mathsf{ST-pair}} \text{ inside } \mathcal{T} :\Leftrightarrow {}^{\exists}M \colon \text{ silting object of } \mathcal{C} \text{ s.t.} \\ (1) \ (\mathcal{T}_M^{\leq 0},\mathcal{T}_M^{\geq 0}) \colon t \text{-structure on } \mathcal{T} \\ (2) \ \mathcal{T}_M^{\geq 0} \subseteq \mathcal{D} \\ (3) \ \mathcal{D} = \text{thick } \mathcal{T}_M^0 \end{array}$$

Properties

• (2) & (3) $\Rightarrow (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0})$: bounded *t*-structure on \mathcal{D} $(\mathcal{D}_M^{\leq 0} := \mathcal{T}_M^{\leq 0} \cap \mathcal{D} \text{ and } \mathcal{D}_M^{\geq 0} := \mathcal{T}_M^{\geq 0} \cap \mathcal{D})$ • $\mathcal{D}_M^{\leq 0} \cap \mathcal{D}_M^{\geq 0} \simeq \mod \operatorname{End}_{\mathcal{T}}(M)$ • $M, N \in \mathcal{C}$: silting objects Then $(\mathcal{C}, \mathcal{D}, M)$: ST-triple $\Leftrightarrow (\mathcal{C}, \mathcal{D}, N)$: ST-triple

Property of ST-pair

$$\begin{array}{l} (\mathcal{C},\mathcal{D}) \colon \underline{\mathsf{ST-pair}} \text{ inside } \mathcal{T} :\Leftrightarrow {}^{\exists}M \colon \text{ silting object of } \mathcal{C} \text{ s.t.} \\ (1) \ (\mathcal{T}_M^{\leq 0},\mathcal{T}_M^{\geq 0}) \colon t \text{-structure on } \mathcal{T} \\ (2) \ \mathcal{T}_M^{\geq 0} \subseteq \mathcal{D} \\ (3) \ \mathcal{D} = \operatorname{thick} \mathcal{T}_M^0 \end{array}$$

Properties

• (2) & (3)
$$\Rightarrow (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0})$$
: bounded *t*-structure on \mathcal{D}
 $(\mathcal{D}_M^{\leq 0} := \mathcal{T}_M^{\leq 0} \cap \mathcal{D} \text{ and } \mathcal{D}_M^{\geq 0} := \mathcal{T}_M^{\geq 0} \cap \mathcal{D})$
• $\mathcal{D}_M^{\leq 0} \cap \mathcal{D}_M^{\geq 0} \simeq \text{mod End}_{\mathcal{T}}(M)$
• $M, N \in \mathcal{C}$: silting objects
Then $(\mathcal{C}, \mathcal{D}, M)$: ST-triple $\Leftrightarrow (\mathcal{C}, \mathcal{D}, N)$: ST-triple

Property of ST-pair

$$\begin{array}{l} (\mathcal{C},\mathcal{D}) \colon \underline{\mathsf{ST-pair}} \text{ inside } \mathcal{T} :\Leftrightarrow {}^{\exists}M \colon \text{ silting object of } \mathcal{C} \text{ s.t.} \\ (1) \ (\mathcal{T}_M^{\leq 0},\mathcal{T}_M^{\geq 0}) \colon t \text{-structure on } \mathcal{T} \\ (2) \ \mathcal{T}_M^{\geq 0} \subseteq \mathcal{D} \\ (3) \ \mathcal{D} = \text{thick } \mathcal{T}_M^0 \end{array}$$

Properties

• (2) & (3)
$$\Rightarrow (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0})$$
: bounded *t*-structure on \mathcal{D}
 $(\mathcal{D}_M^{\leq 0} := \mathcal{T}_M^{\leq 0} \cap \mathcal{D} \text{ and } \mathcal{D}_M^{\geq 0} := \mathcal{T}_M^{\geq 0} \cap \mathcal{D})$
• $\mathcal{D}_M^{\leq 0} \cap \mathcal{D}_M^{\geq 0} \simeq \mod \operatorname{End}_{\mathcal{T}}(M)$
• $M, N \in \mathcal{C}$: silting objects
Then $(\mathcal{C}, \mathcal{D}, M)$: ST-triple $\Leftrightarrow (\mathcal{C}, \mathcal{D}, N)$: ST-triple

 $(\mathcal{C},\mathcal{D})\text{:}$ ST-pair inside \mathcal{T}

Theorem

$$\exists \text{injection } \Psi : \text{silt}\mathcal{C} \to t \text{-str}_{\mathrm{bd}}\mathcal{D} \quad (M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0}))$$

Question When is Ψ a bijectio

Theorem [Keller-Vossieck (1988)]

 Λ : path algebra of Dynkin type $\Longrightarrow \Psi$: bijection

 Λ : Kronecker algebra $\Longrightarrow \Psi$: NOT bijective

Adachi and Mizuno (j.w. with Yang)

How to capture *t*-structures

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $(\mathcal{C},\mathcal{D})\text{:}$ ST-pair inside \mathcal{T}

Theorem

$$\exists \text{injection } \Psi : \text{silt}\mathcal{C} \to t \text{-str}_{\mathrm{bd}}\mathcal{D} \quad (M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0}))$$

Question

When is Ψ a bijection?

Theorem [Keller-Vossieck (1988)]

 Λ : path algebra of Dynkin type $\Longrightarrow \Psi$: bijection

 Λ : Kronecker algebra $\Longrightarrow \Psi$: NOT bijective

Adachi and Mizuno (j.w. with Yang)

How to capture *t*-structures

・ロン ・四 ・ ・ ヨン ・ ヨン

$$(\mathcal{C},\mathcal{D})$$
: ST-pair inside \mathcal{T}

Theorem

$$\exists \text{injection } \Psi : \text{silt}\mathcal{C} \to t \text{-str}_{\mathrm{bd}}\mathcal{D} \quad (M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0}))$$

Question

When is Ψ a bijection?

Theorem [Keller-Vossieck (1988)]

 Λ : path algebra of Dynkin type $\Longrightarrow \Psi$: bijection

 Λ : Kronecker algebra $\Longrightarrow \Psi$: NOT bijective

Adachi and Mizuno (j.w. with Yang)

How to capture *t*-structures

イロト イ団ト イヨト イヨ

Silting-discrete triangulated category

$$M \ge N : \Leftrightarrow \operatorname{Hom}_{\mathcal{T}}(M, N[\forall i > 0]) = 0$$

Proposition [Aihara-Iyama (2012)]

 $(\operatorname{silt} \mathcal{T}, \geq)$ is a poset.

Definition [Aihara (2013)]

 \mathcal{T} : silting-discrete : $\Leftrightarrow {}^{\forall}M \in \operatorname{silt}\mathcal{T}$ and ${}^{\forall}d \in \mathbb{Z}_{>0}$,

 d_M -silt $\mathcal{T} := \{ N \in \operatorname{silt} \mathcal{T} \mid M \ge N \ge M[d-1] \}$: finite

$\begin{aligned} \mathcal{T}: \mbox{ silting-discrete triangulated category} \\ \Rightarrow \mbox{ the poset } (silt\mathcal{T}, \geq) \mbox{ has various good properties.} \end{aligned}$

Silting-discrete triangulated category

$$M \ge N : \Leftrightarrow \operatorname{Hom}_{\mathcal{T}}(M, N[\forall i > 0]) = 0$$

Proposition [Aihara-Iyama (2012)]

 $(\operatorname{silt} \mathcal{T}, \geq)$ is a poset.

Definition [Aihara (2013)]

 $\mathcal{T}: \text{ silting-discrete } :\Leftrightarrow {}^{\forall}M \in \operatorname{silt} \mathcal{T} \text{ and } {}^{\forall}d \in \mathbb{Z}_{>0},$

 d_M -silt $\mathcal{T} := \{ N \in \operatorname{silt} \mathcal{T} \mid M \ge N \ge M[d-1] \}$: finite

 $\mathcal{T}: \text{ silting-discrete triangulated category} \\ \Rightarrow \text{ the poset } (\operatorname{silt} \mathcal{T}, \geq) \text{ has various good properties.}$

Adachi and Mizuno (j.w. with Yang)

How to capture *t*-structures

$$(\mathcal{C},\mathcal{D})$$
: ST-pair inside \mathcal{T}

Theorem

The following are equivalent:

- (1) Ψ : bijection.
- (2) C: silting-discrete.

(3) The heart of any bounded *t*-structure on \mathcal{D} has a projective generator.

$$\Psi: \operatorname{silt} \mathcal{C} \longrightarrow t\operatorname{-str}_{\operatorname{bd}} \mathcal{D} \quad (M \mapsto (\mathcal{D}_M^{\leq 0}, \mathcal{D}_M^{\geq 0}))$$

Application: Stability conditions

 $(\mathcal{C},\mathcal{D})\text{:}$ ST-pair

Corollary [Qiu-Woolf (2014), BPP, PSZ, AMY]

 $\mathcal{C}: \text{ silting-discrete}$

 \Rightarrow the "stability manifold" $\operatorname{Stab}(\mathcal{D})$ is contractible.

BPP := Broomhead-Pauksztello-Ploog (2016) PSZ := Pauksztello-Saorin-Zvonareva (2017)

Examples of silting-discrete algebras

Example

- $\mathsf{K}^{\mathrm{b}}(\mathsf{proj}\Lambda)$: silting-discrete if Λ is
 - local algebras,
 - representation-finite hereditary algebras,
 - derived-discrete algebras,
 - representation-finite symmetric algebras,
 - generalized Brauer tree algebras,
 - algebras of dihedral, semidihedral, quatenion type.

We want to construct various examples of silting-discrete triangulated categories.

Aim

Give a criterion of silting-discrete triangulated categories by cluster theory.

We want to construct various examples of silting-discrete triangulated categories.

Aim

Give a criterion of silting-discrete triangulated categories by cluster theory.

$$(\mathcal{C},\mathcal{D})$$
: ST-pair (or $(\mathcal{C},\mathcal{D},M)$: ST-triple) inside \mathcal{T}

Definition [lyama-Yang (2014)]

 $(\mathcal{C},\mathcal{D}): \text{ } d\text{-Calabi-Yau } (d\text{-CY}) \text{ pair } :\Leftrightarrow$

•
$$\mathcal{C} \supseteq \mathcal{D}$$

• ^{\exists}funct. isom. Hom_{\mathcal{T}} $(X, Y) \simeq \mathbb{D}$ Hom_{\mathcal{T}} $(Y, X[d])(X \in \mathcal{D}, Y \in \mathcal{C})$

Remark

$M, N \in \mathcal{C}$: silting objects Then $(\mathcal{C}, \mathcal{D}, M)$: d-CY triple $\Leftrightarrow (\mathcal{C}, \mathcal{D}, N)$: d-CY triple

Silting theory and Cluster theory

For simplicity, $d \ge 2$: integer. (C, D): (d+1)-CY pair (or (C, D, M): (d+1)-CY triple)

Theorem [lyama-Yang (2014)]

(1) $\mathcal{U} := \mathcal{C}/\mathcal{D}$: *d*-Calabi-Yau triangulated category (2) The canonical functor $\mathcal{C} \to \mathcal{U}$ induces an injection

$$\sigma: d_M\operatorname{-silt} \mathcal{C} \to d\operatorname{-ctilt} \mathcal{U}.$$

(3) $d = 2 \Rightarrow$ the map π is bijective.

 $U \in \mathcal{U}: d\text{-cluster-tilting } (d\text{-}\mathsf{CT}) \text{ object } :\Leftrightarrow \\ \mathsf{add} U = \{X \in \mathcal{U} \mid \operatorname{Hom}_{\mathcal{U}}(U, X[i]) = 0 \ (1 \le i \le d-1)\}$

 $d\operatorname{-ctilt} \mathcal{U}$: the set of isoclasses of basic $d\operatorname{-CT}$ objects of \mathcal{U}

17 / 21

Cluster theory and silting theory

$(\mathcal{C},\mathcal{D})$: (d+1)-CY pair

Theorem

 $d\operatorname{-ctilt} \mathcal{U}$: finite $\Longrightarrow \mathcal{C}$: silting-discrete

Theorem

Assume d = 2.

The following are equivalent.

- (1) C: silting-discrete
- (2) 2_M -silt C: finite set for all silting objects M
- (2') 2_M -silt \mathcal{C} : finite set for <u>some</u> silting object M
- (3) 2-ctilt \mathcal{U} : finite set

Cluster theory and silting theory

$(\mathcal{C},\mathcal{D})$: (d+1)-CY pair

Theorem

 $d\operatorname{-ctilt} \mathcal{U}$: finite $\Longrightarrow \mathcal{C}$: silting-discrete

Theorem

Assume d = 2.

The following are equivalent.

- (1) C: silting-discrete
- (2) 2_M -silt C: finite set for all silting objects M
- (2') 2_M -silt \mathcal{C} : finite set for some silting object M
 - (3) 2-ctilt \mathcal{U} : finite set

Application: derived preprojective algebra

Q: finite (graded) quiver, $d \ge 1$ $\Gamma := \Gamma_{d+1}(Q)$: derived preprojective algebra $H^0(\Gamma)$: finite dimensional

Lemma

$$(\mathsf{per}(\Gamma), \mathsf{D}_{\mathrm{fd}}(\Gamma))$$
: $(d+1)$ -CY pair

Theorem

The following are equivalent.

- (1) $per(\Gamma)$: silting-discrete
- (2) Q: Dynkin

Application: complete Ginzburg dg algebra

(Q,W): quiver with potential $\Gamma:=\Gamma(Q,W)$: complete Ginzburg dg algebra $H^0(\Gamma)$: finite dimensional

Lemma

```
(\mbox{per}(\Gamma),\mbox{D}_{fd}(\Gamma)): 3-CY pair
```

Theorem

The following are equivalent.

- (1) $per(\Gamma)$: silting-discrete.
- (2) Q is related to a Dynkin quiver by a finite sequence of quiver mutations.

< 67 ▶

Application: Stability conditions

$\Gamma \in \{\Gamma_{d+1}(Q), \Gamma(Q, W)\}$ per Γ : silting-discrete

Corollary

The "stability manifold" $\operatorname{Stab}(\mathsf{D}_{fd}(\Gamma))$ is contractible.

This result was a conjecture given by Yu Qiu (2011).