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Setting of this talk

For simplicity,

• k: a field.

• Λ: a finite dimensional k-algebra.

• C ̸= 0: a fin. dim. bimodule over Λ.

• a module := a right module
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Section 1.
Self-injective dimension
formula for trivial extension
algebras
Remark 1.1

The contents of this section is

taken from the paper

“Homological dimension formulas

for trivial extension algebras”

arXiv 1710.01469
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Section 1.1.
Trivial extension algebras
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A trivial extension algebra

A trivial extension algebra A = Λ⊕ C

of Λ by C is an algebra
whose underlying k-module is Λ⊕ C
and the multiplication is defined

(r , c)(s, d) := (rs, rd + cs)

for r , s ∈ Λ, c, d ∈ C .
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Remark: a canonical grading of a trivial extension algebra

A trivial extension algebra A = Λ⊕ C has

the grading

deg Λ = 0, degC = 1.
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Quasi-Veronese algebra (1/4)

To show an importance of
trivial extension algebras,
we will explain that
every finitely graded algebra

A =
ℓ⊕

i=0

Ai

is graded Morita equivalent to
a trivial extension algebra
with the canonical grading.
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Quasi-Veronese algebra (2/4)

A =
⊕ℓ

i=0 Ai : a finitely graded algebra

We define
an algebra ∇A (the Beilinson algebra) and
a bimodule ∆A over ∇A
in the following way:
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Quasi-Veronese algebra (3/4)

∇A :=


A0 A1 · · · Aℓ−1
0 A0 · · · Aℓ−2
... ... ...
0 0 · · · A0

 ,

∆A :=


Aℓ 0 · · · 0

Aℓ−1 Aℓ · · · 0
... ... ...

A1 A2 · · · Aℓ

 .
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Quasi-Veronese algebra (4/4)

Then A[ℓ] = ∇A⊕∆A is

the ℓ-th quasi-Veronese algebra (I. Mori).

Proposition 1.2

qv : ModZ A ∼−→ ModZ A[ℓ]

In particular,
A : Iwanaga-Gorenstein ⇔

A[ℓ] : Iwanaga-Gorenstein.
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Section 1.2.
Self-injective dimension
formula
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Injective dimension of object of D(ModΛ) (1/2)

Definition 1 (Avramov-Foxby)

An object M of D(ModΛ) is said to have

injective dimension at most n and is denoted as

id
Λ

M ≤ n.
if it has an injective resolution I such that

Im = 0 for m > n.

id
Λ

M = n⇔ id
Λ

M ≤ n holds

but id
Λ

M ≤ n − 1 does not.
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Injective dimension of object of D(ModΛ) (2/2)

Remark 1.3

• For M ∈ ModΛ,

the usual injective dimension and

the injective dimension

as an object of D(ModΛ) coincide.

• id 0 := −∞
• For M ∈ D(ModΛ),

M = 0⇔ idM = −∞
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Notation: the iterated derived tensor product of C

For a positive integer a > 0,

C a := C ⊗L
Λ C ⊗L

Λ · · · ⊗
L
Λ C (a-factors).

By convention,

C0 := Λ.
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A self-injective dimension formula

θ : Λ→ RHomΛ(C ,C), θ(r)(c) := rc

Θa := RHomΛ(C a, θ) :

RHomΛ(C a,Λ)→ RHomΛ(C a+1,C)

Theorem 2

Let A = Λ⊕ C . Then,

id
A

A = gr.id
A

A

= sup{ id
Λ

C , id
Λ
cnΘa + a + 1 | a ≥ 0}
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A criterion for finiteness of self-injective dimension

id
A

A = sup{id
Λ

C , id
Λ
cnΘa + a+1 | a ≥ 0}

Corollary 3

id
A

A <∞ if and only if

the following conditions are satisfied:

(1) id
Λ

C <∞

(2) id
Λ
cnΘa <∞ for a ≥ 0.

(3) Θa is an isomorphism for a≫ 0.
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The asid conditions and the asid number (1/4)

These three conditions are called

the right asid conditions (an abbreviation
of “attaching self-injective dimension”).
A bimodule C satisfying these conditions is
said to be a right asid bimodule.

Definition 4

For a right asid module C ,

we define the right asid number to be

αr := min{a ≥ 0 | Θa is an isomorphism}.
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The asid conditions and the asid number (2/4)

Let C be right asid and set d := idA.
The graded co-syzygies Ω−nA (0 ≤ n ≤ d)
are concentrated in degree ≤ 1.
The top degree of the socles is 1
i.e.,soc(Ω0A)1 = soc(A)1 ̸= 0.
The right asid number measures
the bottom degree.
Lemma 5

αr = max{a | ∃n, soc(Ω−nA)−a ̸= 0}+ 1
where a ≥ −1.
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The asid conditions and the asid number (3/4)

We define a left asid bimodule C

as a bimodule such that
the left self-injective dimension of
A = Λ⊕ C is finite.
The left asid number αℓ for
a left asid bimodule is defined
in a similar way.
A bimodule C is called asid
if it is both left and right asid.
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The asid conditions and the asid number (4/4)

Proposition 1.4

A bimodule C is asid with αr = αℓ = 0
if and only if

C is a cotilting bimodule over Λ
in the sense of J. Miyachi.

Remark 1.5

This class of IG-algebra A = Λ⊕ C
can be regarded as

“derived Frobenius extension” of Λ.
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Section 1.3
The kernel of the canonical
functor ϖ
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The kernel of the canonical functor ϖ (1/3)

To prove the self-injective dimension
formula,
we make use of the grading of A = Λ⊕ C .
By the same method,
we obtain a description of
the kernel Kerϖ

of the canonical functor ϖ.
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The kernel of the canonical functor ϖ (2/3)

Let ϖ denotes the canonical functor

Db(mod Λ) ↪→ Db(modZ A)
quotient−−−−→ SingZ A.

where
SingZ A := Db(modZ A)/Kb(projZ A).

Kerϖ = Db(mod Λ) ∩ Kb(projZ A)
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The kernel of the canonical functor ϖ (3/3)

Assume that pdCΛ <∞.
Then −⊗L

Λ C acts on Kb(proj Λ).

Proposition 1.6

Kerϖ =
∪
a≥0

Ker(−⊗L
Λ C a) ⊂ Kb(proj Λ)

where we regard −⊗L
Λ C a as

an endofunctor of Kb(proj Λ).
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Section 2.
On finitely graded IG-algebras
and the stable categories of
their (graded) CM-modules
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Section 2.1.
(Graded) Iwanaga-Gorenstein
algebras and (graded)
Cohen-Macaulay modules
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Iwanaga-Gorenstein algebras

An algebra A is called
Iwanaga-Gorenstein(IG)

if it is Noetherian (on both sides) and

id
A

A <∞, id
Aop

A <∞.

By Zaks’ Theorem,
under Noetherian hypothesis,
the second condition is equivalent to

id
A

A = id
Aop

A <∞.
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Graded Iwanaga-Gorenstein algebras

A graded algebra A =
⊕

i=0 Ai is called
graded Iwanaga-Gorenstein(IG)
if it is graded Noetherian (on both sides)
and

gr.id
A

A <∞, gr.id
Aop

A <∞.

By Zaks’ Theorem,
under graded Noetherian hypothesis,
the second condition is equivalent to

gr.id
A

A = gr.id
Aop

A <∞.
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Remark on graded IG and IG (1/2)

A graded algebra A =
⊕

i≥0 Ai is
graded IG if and only if
it is IG as an ungraded algebra.
Moreover,

gr.id
A

A ≤ id
A

A ≤ gr.id
A

A + 1.

The second inequality is due to
M. Van den Bergh.
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Remark on graded IG and IG (2/2)

When A =
⊕ℓ

i=0 Ai is finitely graded,
we have

gr.id
A

A = id
A

A.
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Graded CM-modules

Definition 6

A graded A-module M is called

Cohen-Macaulay(CM) if

Ext≥1A (M,A) = 0.

• CMZ A: the category of graded CM
A-modules

• CMZ A : the stable category of graded
CM A-modules.
(a triangulated category)
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Related triangulated categories

• SingZ A = Db(modZ A)/Kb(projZ A):
the graded singular derived category.

• Kac(projZ A): the homotopy category of
acyclic complexes of
graded projective A-modules.

• O = Db(mod≥0 A) ∩ Db(mod≥1 Aop)∗ :
the Orlov subcategory
where (−)∗ = RHomAop(−,A).
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These triangulated categories are equivalent

Kac(projZ A)
Z0

∼ //CMZ A
β≀
��

O
π|O
∼ //SingZ A

where π|O : the restriction of
π : Db(modZ A)→ SingZ A.
β : Rickard, Happel and Buchweitz.
Z0: Buchweitz.
π|O : Orlov.
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Section 2.2.

When is A = Λ⊕ C IG?
When A = Λ⊕ C is IG!
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An observation

A = Λ⊕ C is IG if and only if
C is an asid bimodule.
Assume that Λ is IG. If C satisfies
the 1-st right and left asid conditions

idΛ C <∞, idΛop C <∞,

then the 2-nd right and left asid conditions
are automatically satisfied.
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A categorical characterization (1/2)

Theorem 7

Assume that Λ is IG and that

idΛ C <∞, idΛop C <∞.

Then A = Λ⊕ C is IG if and only if

Kb(proj Λ) has an admissible subcategory T
which satisfies the following conditions (1), (2).

admissibility:

Kb(proj Λ) = T ⊥ T⊥ = ⊥T ⊥ T
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A categorical characterization (2/2)

Theorem 7 (conti.): The conditions for T.

(1) The functor T = −⊗L
Λ C acts on T

as an equivalence, i.e., T (T) ⊂ T and

T |T : T
∼−→ T autoequivalence.

(2) The functor T = −⊗L
Λ C

nilpotently acts on T⊥, i.e.,
T (T⊥) ⊂ T⊥ and
T a(T⊥) = 0 for some a ∈ N.
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When A = Λ⊕ C is IG (1/4)

Theorem 8

Assume that Λ is IG and C is an asid bimodule.

Hence A = Λ⊕ C is IG. Then,

(1) αr = αℓ =: α,

(2) T = thickCα,

(3) T⊥ = Ker(−⊗L
Λ Cα) = Kerϖ

where ϖ denotes the canonical functor

ϖ : Db(mod Λ) ↪→ Db(modZ A)→ SingZ A
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When A = Λ⊕ C is IG (2/4)

Theorem 9

If moreover gldimΛ <∞,

then T ∼= CMZ A,

Kac(projZ A)
Z0

∼ //

p0 ≀
��

CMZ A
β≀
��

T
in|T
∼ //O

π|O
∼ //SingZ A

where in|T : the restriction of

in : Db(mod Λ) ⊂ Db(modZ A).
ϖ|T = π|O ◦ in|T.
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When A = Λ⊕ C is IG (3/4)

In particular,

CMZ A is realized as
an admissible subcategory of Db(mod Λ).

Db(mod Λ) ⊃ T ∼= CMZ A

Corollary 10

A =
⊕ℓ

i=0 Ai : a fin. dim. graded IG-algebra.

If gldimA0 <∞, then the Grothendieck group

K0(CM
Z A) is free and

rankK0(CM
Z A) ≤ ℓ#{simple A-modules}
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When A = Λ⊕ C is IG (4/4)

Remark 2.1

In the case where Λ is IG,

we can obtain a similar commutative diagram

by introducing the notion of

locally perfect complexes .
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Section 3. Applications
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Section 3.1.
Two classes of IG algebras of
finite CM-type
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CM-version of Gabreial’s Theorem in covering theory

Theorem 11 (MY-Yoshiwaki)

Let A be a finite dimensional graded IG algebra.

Then, A is of finite CM type if and only if

it is of finite graded CM-type.

Moreover, if this is the case, the functor

modZ A→ modA which forgets the grading

induces the equality

indCMZ A/(1) = indCMA.
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Iterated tilted algeba of Dynkin type

Theorem 12

Let Λ be an iterated tilted algebra of Dynkin type,

that is, Λ is derived equivalent to

the path algebra kQ of some Dynkin quiver Q.

If a trivial extension algebra A = Λ⊕ C is IG,

then it is of finite CM type.
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The case C = N ⊗k M (1/2)

M : a right Λ-module.
N : a left Λ-module.
A := Λ⊕ (N ⊗k M).

Theorem 13

Assume gldimΛ <∞.

(1) gldimA <∞ if and only if M ⊗L
Λ N = 0.

(2) A is IG and gldimA =∞ if and only if

RHom(M,M) ∼= k and

RHom(M,Λ) = N[−p] for some p ∈ N.
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The case C = N ⊗k M (2/2)

Theorem 13 (conti.)

Assume that A = Λ⊕ (N ⊗k M) is IG and
gldimA =∞. Then the followings holds.

(a) Let p be the integer in (2). Then
p = pd

Λ
M = pd

Λop
N.

(b) CMZ A ∼= Db(mod k)
under which (1) corresponds [p + 1].

(c) CMA ∼= (mod k)⊕p+1.

(d) indCMA = {M,ΩM, · · · ,ΩpM}.
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Section 3.2.
Classification of asid
bimodule
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Using the categorical characterization

obtained in Theorem 7,
we obtain the complete list of
asid modules C
when Λ is the path algebra of
A2-quiver or A3-quiver
in the following strategy.
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The strategy of classification

Step 1.

Classify admissible subcategories
T of Kb(proj Λ).
For the path algebra of A2-quiver or
A3-quiver, the first step is completed
by Ingalls-Thomas, Araya.

Step 2. For an admissible subcategory T,
classify bimodules C such that
the functor −⊗L

Λ C acts T as
an equivalence and nilpotently acts on T⊥.
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The quiver presentation of C

The case Λ = k[1
α←− 2].

We use a quiver presentation
to exhibit a bimodule C over Λ.

e1Ce1
α ·

��

e1Ce2·αoo

α ·
��

e2Ce1 e2Ce2·α
oo

ei : the idempotent of Λ
corresponding to the vertex i
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The list of asid bimodule over 1← 2 (1/3)

(I) T = Db(mod Λ)

(precisely the case α = 0.)

Λ = k
��

0oo

��

k koo

, D(Λ) = k
��

koo

��

0 koo

(II) T = thickP1

Λe1 ⊗k e1Λ = k
��

0oo

��

k 0oo
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The list of asid bimodule over 1← 2 (2/3)

(III) T = thickP2

Λe2 ⊗k e2Λ = 0
��

0oo

��

k koo

(IV) T = thick I2

S left
1 ⊗k S right

2 = 0
��

koo

��

0 0oo
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The list of asid bimodule over 1← 2 (3/3)

(V) T = 0

(precisely the case gldimA <∞.)

(V-1) (Λe2 ⊗k e1Λ)⊕n = 0
��

0oo

��

kn 0oo

(V-2) (S left
1 ⊗k e2Λ)⊕n = kn

��

knoo

��

0 0oo

(V-3) (Λe1 ⊗k S right
2 )⊕n = 0

��

knoo

��

0 knoo
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The list of asid module C of 1← 2→ 3

such that gldimA =∞.
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The list for 1← 2→ 3, gldimA =∞ (1/9)

(I) T = Db(mod Λ)
(precisely the case α = 0.)

k

��

0oo //

��

0

��
k koo // k

0

OO

0oo //

OO

k

OO

0

��

0oo //

��

k

��
k koo // k

k

OO

0oo //

OO

0

OO

0

��

koo //

��

k

��
0 koo // 0

k

OO

koo //

OO

0

OO

k

��

koo //

��

0

��
0 koo // 0

0

OO

koo //

OO

k

OO
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The list for 1← 2→ 3, gldimA =∞ (2/9)
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The list for 1← 2→ 3, gldimA =∞ (2/9)

(II) T = thick(P1, I1, I2)
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The list for 1← 2→ 3, gldimA =∞ (3/9)

(IV) T = thick(P1,P2, I3)
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The list for 1← 2→ 3, gldimA =∞ (4/9)

(VI) T = thick(P1,P3)
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The list for 1← 2→ 3, gldimA =∞ (5/9)

(VIII) T = thickP3
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The list for 1← 2→ 3, gldimA =∞ (6/9)

(X) T = thick I1
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The list for 1← 2→ 3, gldimA =∞ (7/9)

(XI) T = thick I3
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The list for 1← 2→ 3, gldimA =∞ (8/9)

(XII) T = thickP2
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The list for 1← 2→ 3, gldimA =∞ (9/9)

(XIII) T = thick I2
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The last quivers
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Thank you

ありがとうございました
Danke schön
Merci beaucoup
Tack s̊a mycket
謝謝
Kamsahamnida
Cam on nhieu
dhônyôbad

thanks a lot!!(literally)
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A question for the audience

Problem 14

Naming. Is “asid” a good name?
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