On the vanishing of self extensions over Cohen-Macaulay local rings

Tokuji Araya

Okayama University of Science

Oct. 7th. 2017

R: Commutative Noetheran local ring.

mod R: the category of finitely generated R-modules.

 $\mathsf{X}^n := \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{ht} \mathfrak{p} \le n \}$

R: Commutative Noetheran local ring.

mod R: the category of finitely generated R-modules.

 $\mathsf{X}^n := \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{ht} \mathfrak{p} \le n \}$

 $M \in \operatorname{mod} R$,

R: Commutative Noetheran local ring.

mod R: the category of finitely generated R-modules.

$$\mathsf{X}^n := \{ \mathfrak{p} \in \operatorname{Spec} R | \operatorname{ht} \mathfrak{p} \le n \}$$

 $M \in \mod R$, M is locally free on $X^n \iff M_p$ is a free R_p -module for all $p \in X^n$.

Conjecture 1 (Auslander-Reiten)

$M \in \operatorname{mod} R$. If $\operatorname{Ext}_R^{>0}(M, M \oplus R) = 0$, then M is free.

Conjecture 1 (Auslander-Reiten)

 $M \in \operatorname{mod} R$. If $\operatorname{Ext}_{R}^{>0}(M, M \oplus R) = 0$, then M is free.

Theorem 2 (Huneke-Leuschke (2004), A (2009))

Let R be a Gorenstein normal domain and $M \in \text{mod } R$. If $\text{Ext}_{R}^{>0}(M, M \oplus R) = 0$, then M is free.

Theorem 3 (A)

Let R be a Gorenstein local ring of dimension d > 1 and $M \in \text{mod } R$. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-1}(R)$,
- (3) $\operatorname{Ext}_{R}^{d-1}(M, M) = 0.$

Then, M is free.

Theorem 3 (A)

Let R be a Gorenstein local ring of dimension d>1 and $M\in \operatorname{mod} R.$ Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-1}(R)$,
- (3) $\operatorname{Ext}_{R}^{d-1}(M, M) = 0.$

Then, M is free.

Theorem 4 (Ono-Yoshino (2017))

Let R be a Gorenstein local ring of dimension d > 2 and $M \in \text{mod } R$. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-2}(R)$,
- (3) $\operatorname{Ext}_{R}^{d-1}(M, M) = \operatorname{Ext}_{R}^{d-2}(M, M) = 0.$

Then, M is free.

Question 5

Let R be a Gorenstein local ring of dimension d and $M \in \operatorname{mod} R.$ Let 0 < n < d. Assume

- $(1) \ M$ is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, is M free?

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Theorem 6 (A-Celikbas-Sadeghi-Takahashi(2017))

Let R be a Cohen-Macaulay local ring of dimension d with canonical module ω . Let $M \in \text{mod } R$ and 0 < n < d. Assume

- (1) M satisfies (S_2) and M^* is maximal Cohen-Macaulay,
- (2) $\operatorname{pd}_{R_p} M_p < \infty$ for all $\mathfrak{p} \in X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, (M^{*})^{\dagger}) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free. Here, $(-)^* := \operatorname{Hom}_R(-, R)$, $(-)^{\dagger} := \operatorname{Hom}_R(-, \omega)$

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Proof

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Proof

Claim. $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$.

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Proof

Claim. $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$. Induction on $\operatorname{ht} \mathfrak{p} =: t$.

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Proof

Claim. $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$. Induction on $\operatorname{ht} \mathfrak{p} =: t$. If $t \leq d - n$, then $M_{\mathfrak{p}}$ is free by (2).

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Proof

Claim. $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$. Induction on $\operatorname{ht} \mathfrak{p} =: t$. If $t \leq d - n$, then $M_{\mathfrak{p}}$ is free by (2). Suppose $d - n < t \leq d$. Localize at \mathfrak{p} ,

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Proof

Claim. $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$. Induction on ht $\mathfrak{p} =: t$. If $t \leq d - n$, then $M_{\mathfrak{p}}$ is free by (2). Suppose $d - n < t \leq d$. Localize at \mathfrak{p} , $R_{\mathfrak{p}}$ is Gorenstein local ring of dimension t. $M_{\mathfrak{p}}$ is a MCM $R_{\mathfrak{p}}$ -module which is locally free on $X^{t-1}(R_{\mathfrak{p}})$. $\operatorname{Ext}_{R_{\mathfrak{p}}}^{t-1}(M_{\mathfrak{p}}, M_{\mathfrak{p}}) = \operatorname{Ext}_{R}^{t-1}(M, M)_{\mathfrak{p}} = 0$ $(d - n \leq t - 1 \leq d - 1)$.

Let R be a Gorenstein local ring of dimension d and $M \in \text{mod } R$. Let 0 < n < d. Assume

- (1) M is maximal Cohen-Macaulay,
- (2) M is locally free on $X^{d-n}(R)$,
- (3) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for all $d n \leq i \leq d 1$.

Then, M is free.

Proof

Claim. $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec} R$. Induction on ht $\mathfrak{p} =: t$. If $t \leq d - n$, then $M_{\mathfrak{p}}$ is free by (2). Suppose $d - n < t(\leq d)$. Localize at \mathfrak{p} , $R_{\mathfrak{p}}$ is Gorenstein local ring of dimension t. $M_{\mathfrak{p}}$ is a MCM $R_{\mathfrak{p}}$ -module which is locally free on $X^{t-1}(R_{\mathfrak{p}})$. $\operatorname{Ext}_{R_{\mathfrak{p}}}^{t-1}(M_{\mathfrak{p}}, M_{\mathfrak{p}}) = \operatorname{Ext}_{R}^{t-1}(M, M)_{\mathfrak{p}} = 0$ $(d - n \leq t - 1 \leq d - 1)$. Then, $M_{\mathfrak{p}}$ is free by Theorem 3.

Thank you!