One delta invariants of certain ideals

Toshinori Kobayashi

October 7, 2017

The delta invariants of modules

- (R, m): commutative Cohen-Macaulay local ring having a canonical module and infinite residue field R/m.
- CM(R): the category of maximal Cohen-Macaulay R-modules.

Definition

Let M be a finitely generated R-module, $i \ge 0$ and $X_M \to M$ be a minimal right CM(R)-cover of M. Then we define

- $\delta(M)$ to be the rank of free summand of X_M .
- $\delta^i(M):=\delta(\Omega^i M),$ where $\Omega^i M$ is the i-th syzygy module of M in the minimal free resolution.

Theorem (Auslander, Yoshino)

Let d > 0 be the Krull dimension of R. Consider the following conditions.

- (a) R is a regular local ring.
- (b) There exists $n \ge 0$ such that $\delta^n(R/\mathfrak{m}) > 0$.
- (c) There exist n > 0 and l > 0 such that $\delta^n(R/\mathfrak{m}^l) > 0$.

Then, the implications (a) \Leftrightarrow (b) \Rightarrow (c) hold. The implication (c) \Rightarrow (a) holds if depth $gr_{\mathfrak{m}}(R) \ge d-1$.

Here we denote by $\operatorname{gr}_I(R)$ the associated graded ring of R with respect to an ideal I of R.

Main Theorem

Theorem (K.)

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with a canonical module ω , having infinite residue field k and Krull dimension d > 0. Let I be an \mathfrak{m} -primary ideal of R such that I/I^2 is a free R/I-module. Consider the following conditions.

- (a) $\delta(R/I) > 0.$
- (b) I is a parameter ideal of R.
- (c) There exists $n \ge 0$ such that $\delta^n(R/I) > 0$.
- (d) There exist n > 0 and l > 0 such that $\delta^n(R/I^l) > 0$.

Then, the implications (a) \Rightarrow (b) \Leftrightarrow (c) \Rightarrow (d) hold. The implication (d) \Rightarrow (c) holds if depth $\operatorname{gr}_I(R) \ge d-1$ and I^i/I^{i+1} is a free R/I-module for any i > 0. The implication (b) \Rightarrow (a) holds if $I \subset \operatorname{tr}(\omega)$.

Lemma (Yoshida)

Let M be a finitely generated R-module and $x \in \mathfrak{m}$ be a regular element on M and R. If $0 \to Y \to X \to M \to 0$ is a minimal Cohen-Macaulay approximation of M, then

$$0 \to Y/xY \to X/xX \to M/xM \to 0$$

is a minimal Cohen-Macaulay approximation of M/xM over R/(x). In particular, it holds that $\delta_R(M) \leq \delta_{R/(x)}(M/xM)$.

Ulrich ideal

Definition

We say that an m-primary ideal I is an *Ulrich ideal* of R if it satisfies the following.

(1) $\operatorname{gr}_{I}(R)$ is a Cohen-Macaulay ring with $a(\operatorname{gr}_{I}(R)) \leq 1 - d$.

(2) I/I^2 is a free R/I-module.

Ulrich ideals satisfy the assumption of the main theorem.

Lemma

Let I be an Ulrich ideal of R. Then I^l/I^{l+1} is a free R/I-module for any $l\geq 1.$

Ulrich ideal

- $\operatorname{index}(R) := \inf\{l \mid \delta(R/\mathfrak{m}^l) = 1\}.$
- $\operatorname{index}(R) < \infty$ if and only if R is Gorenstein on the punctured spectrum.

Corollary

Assume that R is Gorenstein on the punctured spectrum.

I: Urlich ideal that is not a parameter ideal $\implies I \not\subset \mathfrak{m}^{\mathsf{index}(R)}$.

References

- M. AUSLANDER, S. DING, Ø. SOLBERG, Liftings and weak liftings of modules, J. Algebra 156 (1993), 273–317.
- [2] S. GOTO, K.OZEKI, R. TAKAHASHI, K. WATANABE, K. YOSHIDA, Ulrich ideals and modules, *Math. Proc. Cambridge Philos.* Soc. 156 (2014), no. 1, 137–166.
- [3] T. KOBAYASHI, On delta invariants and indices of ideals, arXiv:1705.05042.
- [4] K.YOSHIDA, A note on minimal Cohen-Macaulay approximations, Communications in Algebra 24(1) (1996), 235–246.
- [5] Y. YOSHINO, On the higher delta invariants of a Gorenstein local ring, Proc. Amer. Math. Soc. 124 (1996), 2641–2647.