Two-sided tilting complexes and folded tree-to-star complexes

.

Yuta Kozakai

Tokyo University of Science

Octorber 7, 2017

. Fact on Derived Equivalences (Rickard) .

The following are equivalent:

Γ and **Λ** are derived equivalent.

. Fact on Derived Equivalences (Rickard) .

The following are equivalent:

- **Γ** and **Λ** are derived equivalent.
- There exists a one-sided tilting complex *T* over **Γ** with endomorphism algebra **Λ***op* .

. Fact on Derived Equivalences (Rickard) .

The following are equivalent:

- **Γ** and **Λ** are derived equivalent.
- There exists a one-sided tilting complex *T* over **Γ** with endomorphism algebra **Λ***op* .

Yuta Kozakai Two-sided tilting complexes and folded tree-to-star complexes

■ There exists a two-sided tilting complex *C* over **Γ** *⊗^k* **Λ***op* .

. Fact on Derived Equivalences (Rickard) .

The following are equivalent:

- **Γ** and **Λ** are derived equivalent.
- There exists a one-sided tilting complex *T* over **Γ** with endomorphism algebra **Λ***op* .

Yuta Kozakai Two-sided tilting complexes and folded tree-to-star complexes

■ There exists a two-sided tilting complex *C* over **Γ** *⊗^k* **Λ***op* .

. Fact on Derived Equivalences (Rickard) .

The following are equivalent:

- **Γ** and **Λ** are derived equivalent.
- There exists a one-sided tilting complex *T* over **Γ** with endomorphism algebra **Λ***op* .

and folded tree-to

■ There exists a two-sided tilting complex *C* over **Γ** *⊗^k* **Λ***op* .

. Fact on tilting complexes (Rickard, Keller) .

- *T* **:** one-sided tilting complex over **Γ**
- $\Lambda := \mathrm{End}_{D^b(\Gamma)}(T)^{op}$

. Fact on Derived Equivalences (Rickard) .

The following are equivalent:

- **Γ** and **Λ** are derived equivalent.
- There exists a one-sided tilting complex *T* over **Γ** with endomorphism algebra **Λ***op* .
- There exists a two-sided tilting complex *C* over **Γ** *⊗^k* **Λ***op* .

. Fact on tilting complexes (Rickard, Keller) .

T **:** one-sided tilting complex over **Γ**

 $\Lambda := \mathrm{End}_{D^b(\Gamma)}(T)^{op}$

Then there exists a two-sided tilting complex *C* of

-bimodules satisfying $C \cong T$ **in** $D^b(\Gamma)$ **.**

. Question .

- T **:** one-sided tilting complex over Γ with $\text{End}(T)^{op} \cong \Lambda$
- (1) Can we construct two-sided tilting complex *C* of Γ - Λ -bimodules satisfying $C \cong \overline{T}$ in $D^b(\Gamma)$ by using concrete bimodules?

. Question .

- T **:** one-sided tilting complex over Γ with $\text{End}(T)^{op} \cong \Lambda$ (1) Can we construct two-sided tilting complex *C* of Γ - Λ -bimodules satisfying $C \cong \overline{T}$ in $D^b(\Gamma)$ by using concrete bimodules?
- (2) Given an operation on a one-sided tilting complex *T* which produces another one-sided tilting complex *T ′* , then can we get an operation on the two-sided tilting complex *C* which produces a two-sided tilting complex *C′* ${\rm satisfying}$ $C' \cong T'$ in $D^b(\Gamma)$?

ing complexes and folded tree-to-star comple

.

. Classification of Brauer tree algebras (Rickard) .

. by the number of edges and multiplicity of Brauer tree. Up to derived equivalence, a Brauer tree algebra is determined

.

. Classification of Brauer tree algebras (Rickard) .

. by the number of edges and multiplicity of Brauer tree. Up to derived equivalence, a Brauer tree algebra is determined

The proof of this result is done by constructing a tree-to-star complex, that is a one-sided tilting complex with endomorphism ring Brauer star algebra.

and folded tree-to

.

. Definition (Rickard-Schaps) .

T **:** tree-to-star complex

The following two kinds of operations on *T* are called foldings.

.

. Definition (Rickard-Schaps) .

T **:** tree-to-star complex

The following two kinds of operations on *T* are called foldings.

*−***2** shift of *P* **(***i***)** in the leftmost nonzero term of *T* where the edge *i* is not adjacent to the exceptional vertex.

.

. Definition (Rickard-Schaps) .

T **:** tree-to-star complex

The following two kinds of operations on *T* are called foldings.

- *−***2** shift of *P* **(***i***)** in the leftmost nonzero term of *T* where the edge *i* is not adjacent to the exceptional vertex.
- *−***2** shift of ⊕ *P* **(***i***)** in the leftmost nonzero term of *T* where the edge *i* runs over all the edges adjacent to the exceptional vertex.

.

. Definition (Rickard-Schaps) .

T **:** tree-to-star complex

The following two kinds of operations on *T* are called foldings.

- *−***2** shift of *P* **(***i***)** in the leftmost nonzero term of *T* where the edge *i* is not adjacent to the exceptional vertex.
- *−***2** shift of ⊕ *P* **(***i***)** in the leftmost nonzero term of *T* where the edge *i* runs over all the edges adjacent to the exceptional vertex.

. Theorem (Rickard-Schaps) .

T **:** Rickard tree-to-star complex

 T^{\prime} : complex obtained by applying foldings to T several times Then T' is a tree-to-star complex again.

 $T=T_0 \stackrel{\text{folding}}{\longrightarrow} T_1 \stackrel{\text{folding}}{\longrightarrow} \cdots \stackrel{\text{folding}}{\longrightarrow} T_n=T'$

tree-to-star complex

- A **:** Brauer tree algebra with e edges and multiplicity μ
- B **:** Brauer star algebra with e edges and multiplicity μ
- *T* **:** Rickard tree-to-star complex

- A **:** Brauer tree algebra with e edges and multiplicity μ
- B **:** Brauer star algebra with e edges and multiplicity μ
- *T* **:** Rickard tree-to-star complex
- *M* **:** an indecomposable *A*-*B*-bimodule induing a stable equivalence of Morita type induced by *T*

- A **:** Brauer tree algebra with e edges and multiplicity μ
- B **:** Brauer star algebra with e edges and multiplicity μ
- *T* **:** Rickard tree-to-star complex
- *M* **:** an indecomposable *A*-*B*-bimodule induing a stable equivalence of Morita type induced by *T*

. Theorem (K-Kunugi), (K) .

(1) We can construct a two-sided tilting complex *C* of A - B -bimodules satisfying $C_{\downarrow A} \cong T$ from a minimal projective resolution of *M* as an *A*-*B*-bimodule.

- A **:** Brauer tree algebra with e edges and multiplicity μ
- B **:** Brauer star algebra with e edges and multiplicity μ
- *T* **:** Rickard tree-to-star complex
- *M* **:** an indecomposable *A*-*B*-bimodule induing a stable equivalence of Morita type induced by *T*

. Theorem (K-Kunugi), (K) .

- (1) We can construct a two-sided tilting complex *C* of A - B -bimodules satisfying $C_{\downarrow A} \cong T$ from a minimal projective resolution of *M* as an *A*-*B*-bimodule.
- (2) We can realize foldings as operations of two-sided tilting complexes of *A*-*B*-bimodules.

$$
\begin{array}{ccccccccc} C=C_0 & \longrightarrow & C_1 & \longrightarrow & \cdots & \longrightarrow & C_n \\ \downarrow & & \downarrow & & & \downarrow \\ T=T_0 & \xrightarrow{\mathrm{folding}} & T_1 & \xrightarrow{\mathrm{folding}} & \cdots & \xrightarrow{\mathrm{folding}} & T_n \end{array}
$$

Two-sided tilting complexes and folded tree-to-star com

.

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

↓ folding

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

↓ folding

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

↓ folding

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

↓ folding

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$

↓ folding

$$
T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))
$$

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

↓ folding

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$

↓ folding

$$
T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))
$$

.

$$
\circ \xrightarrow{S_1} \circ \xrightarrow{S_2} \circ \xrightarrow{S_3} \xrightarrow{S_5} \circ
$$

Ricakrd tree-to-star complex *T* and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

$$
T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))
$$

↓ folding

$$
T_1=(2P(S_2)\rightarrow P(S_1)\oplus 3P(S_3)\oplus P(S_4)\oplus P(S_5))
$$

↓ folding

 $T_2=(P(S_1)\oplus 3P(S_3)\oplus P(S_4)\oplus P(S_5)\rightarrow 2P(S_2))$

 $C_i \cong T_i$ in $D^b(A)$ for each $i \in \{0, 1, 2\}$. We will construct a two-sided tilting complex *Cⁱ* satisfying

 \times es and folded tree-to-star comple \times es

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows:

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows:

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows: $T=(3P(S_3)\oplus P(S_4)\oplus P(S_5)\rightarrow 2P(S_2)\rightarrow P(S_1))$

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows: $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows: $T=(3P(S_3)\oplus P(S_4)\oplus P(S_5)\rightarrow 2P(S_2)\rightarrow P(S_1))$

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows: $T=(3P(S_3)\oplus P(S_4)\oplus P(S_5)\rightarrow 2P(S_2)\rightarrow P(S_1))$

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows: $T=(3P(S_3)\oplus P(S_4)\oplus P(S_5)\rightarrow 2P(S_2)\rightarrow P(S_1))$

tilting complexes and folded tree-to-star com

.

*V*_{*i*} : simple *B*-module satisfying $S_i ≅ \text{top } (M \otimes_B V_i)$. Then a projective resolution of M is as follows: $T=(3P(S_3)\oplus P(S_4)\oplus P(S_5)\rightarrow 2P(S_2)\rightarrow P(S_1))$

d tilting complexes and folded tree-to-star co

.

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ *↓* folding $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

.

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ *↓* folding $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

$$
\begin{array}{ccccccc} & & & & P(S_2)\otimes P(V_2)^*\\ C_1: & P(S_4)\otimes P(V_3)^* & \to & P(S_3)\otimes P(V_3)^* & \to_A M_B\\ \oplus & & \oplus & & \oplus &\\ & P(S_5)\otimes P(V_4)^* & & P(S_4)\otimes P(V_4)^*\\ \oplus & & \oplus & & \oplus &\\ & P(S_3)\otimes P(V_5)^* & & P(S_5)\otimes P(V_5)^*\\ \hline \end{array}
$$

.

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ *↓* folding $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

$$
\begin{array}{ccccccc} & & & & P(S_2)\otimes P(V_2)^*\\ \oplus&&\oplus\\ C_+ : & P(S_4)\otimes P(V_3)^* &\to& P(S_3)\otimes P(V_3)^* &\to_A M_B\\ \oplus&&\oplus&&\oplus\\ & P(S_5)\otimes P(V_4)^* & & P(S_4)\otimes P(V_4)^*\\ \oplus&&\oplus&&\oplus\\ & & P(S_3)\otimes P(V_5)^* & & P(S_5)\otimes P(V_5)^*\\ \end{array}
$$

.

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ *↓* folding $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

$$
\begin{array}{ccccccc} & & & & & P(S_2)\otimes P(V_2)^*\\ C&:& P(S_4)\otimes P(V_3)^* & \to & P(S_3)\otimes P(V_3)^* & \to_A M_B\\ \oplus&& \oplus&& \oplus&&\\ P(S_5)\otimes P(V_4)^* && P(S_4)\otimes P(V_4)^*\\ \oplus&& \oplus&& \oplus&&\\ P(S_3)\otimes P(V_5)^* && P(S_5)\otimes P(V_5)^*\\ \end{array}
$$

.

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ *↓* folding $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

 $P(S_2) \otimes P(V_2)^*$ $\textbf{\emph{C}}_1:\;\;P(S_4)\otimes P(V_3)^*\;\;\rightarrow\;\;P(S_3)\otimes P(V_3)^*\;\;\rightarrow_{\textbf{\emph{A}}} M_{\textbf{\emph{B}}}$

Two-sided tilting complexes and folded tree-to-star cor

.

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ *↓* folding $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

 $P(S_2) \otimes P(V_2)^*$ $\textbf{\emph{C}}_{\textbf{1}}:\textbf{\emph{P}}(S_4)\otimes\textbf{\emph{P}}(V_3)^*\;\;\rightarrow\;\textbf{\emph{P}}(S_3)\otimes\textbf{\emph{P}}(V_3)^*\;\;\rightarrow_{\textbf{\emph{A}}}M_{\textbf{\emph{B}}}$

Two-sided tilting complexes and folded tree-to-star cor

.

Remark

\nSince
$$
C_1 = (P(S_2) \otimes P(V_2)^* \rightarrow M)
$$
 is isomorphic to

\n
$$
(P(S_2) \otimes P(V_2)^* \rightarrow I(M) \rightarrow \Omega^{-1}M)
$$
 in $D^b(A)$, we can write C_1 as follows:\n
$$
P(S_1) \otimes P(V_1)^* \oplus
$$
\n
$$
P(S_2) \otimes P(V_2)^* \qquad P(S_3) \otimes P(V_2)^* \oplus
$$
\n
$$
C_1:
$$
\n
$$
\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow A\Omega^{-1}M_B
$$
\n
$$
\oplus
$$
\n
$$
P(S_4) \otimes P(V_4)^* \oplus
$$
\n
$$
P(S_5) \otimes P(V_5)^*
$$
\n■

.

Remark

\nSince
$$
C_1 = (P(S_2) \otimes P(V_2)^* \rightarrow M)
$$
 is isomorphic to

\n
$$
(P(S_2) \otimes P(V_2)^* \rightarrow I(M) \rightarrow \Omega^{-1}M)
$$
 in $D^b(A)$, we can write C_1 as follows:\n
$$
P(S_1) \otimes P(V_1)^* \oplus
$$
\n
$$
P(S_2) \otimes P(V_2)^* \qquad P(S_3) \otimes P(V_2)^* \oplus
$$
\n
$$
C_1:
$$
\n
$$
\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow A\Omega^{-1}M_B \oplus
$$
\n
$$
P(S_4) \otimes P(V_4)^* \oplus
$$
\n
$$
P(S_5) \otimes P(V_5)^*
$$

.

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$
\n
$$
\downarrow \text{ folding}
$$
\n
$$
T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))
$$
\n
$$
P(S_1) \otimes P(V_1)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_2) \otimes P(V_2)^* \qquad P(S_3) \otimes P(V_2)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_2) \otimes P(V_3)^* \rightarrow A\Omega^{-1}M_B
$$
\n
$$
\oplus
$$
\n
$$
P(S_4) \otimes P(V_4)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_5) \otimes P(V_5)^*
$$
\n
$$
V_{\text{total Kozakial}} \qquad \text{Two-sided tiling complexes and folded tree-to-star complexes}
$$

.

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$

\n
$$
\downarrow \text{ folding}
$$

\n
$$
T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))
$$

\n
$$
P(S_1) \otimes P(V_1)^*
$$

\n
$$
\oplus
$$

\n
$$
P(S_2) \otimes P(V_2)^*
$$

\n
$$
\oplus
$$

\n
$$
C_1:
$$

\n
$$
\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow A\Omega^{-1}M_B
$$

\n
$$
\oplus
$$

\n
$$
P(S_4) \otimes P(V_4)^*
$$

\n
$$
\oplus
$$

\n
$$
P(S_5) \otimes P(V_5)^*
$$

.

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$
\n
$$
\downarrow \text{ folding}
$$
\n
$$
T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))
$$
\n
$$
P(S_1) \otimes P(V_1)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_2) \otimes P(V_2)^* \qquad P(S_3) \otimes P(V_2)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_2) \otimes P(V_3)^* \rightarrow A\Omega^{-1}M_B
$$
\n
$$
\oplus
$$
\n
$$
P(S_4) \otimes P(V_4)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_5) \otimes P(V_5)^*
$$
\n
$$
\downarrow \text{Yuta Kozakai}
$$
\n
$$
\text{Two-sided tiling complexes and folded tree-to-star complexes}
$$

.

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$

\n
$$
\downarrow \text{ folding}
$$

\n
$$
T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))
$$

\n
$$
P(S_1) \otimes P(V_1)^*
$$

\n
$$
\oplus
$$

\n
$$
P(S_2) \otimes P(V_2)^* \qquad P(S_3) \otimes P(V_2)^*
$$

\n
$$
\oplus
$$

\n
$$
C_1:
$$

\n
$$
\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow A\Omega^{-1}M_B
$$

\n
$$
\oplus
$$

\n
$$
P(S_4) \otimes P(V_4)^*
$$

\n
$$
\oplus
$$

\n
$$
P(S_5) \otimes P(V_5)^*
$$

.

$$
T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))
$$
\n
$$
\downarrow \text{ folding}
$$
\n
$$
T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))
$$
\n
$$
P(S_1) \otimes P(V_1)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_2) \otimes P(V_2)^* \qquad P(S_3) \otimes P(V_2)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_4) \otimes P(V_4)^*
$$
\n
$$
\oplus
$$
\n
$$
P(S_5) \otimes P(V_5)^*
$$
\n
$$
\downarrow \text{Yuta Kozakai}
$$
\n
$$
Two-sided tiling complexes and folded tree-to-star complexes
$$