Two-sided tilting complexes and folded tree-to-star complexes

Yuta Kozakai

Tokyo University of Science

Octorber 7, 2017

The following are equivalent:

 \blacksquare Γ and Λ are derived equivalent.

The following are equivalent:

- $\$ Γ and Λ are derived equivalent.
- There exists a one-sided tilting complex T over Γ with endomorphism algebra Λ^{op} .

The following are equivalent:

- \blacksquare Γ and Λ are derived equivalent.
- There exists a one-sided tilting complex T over Γ with endomorphism algebra Λ^{op} .
- There exists a two-sided tilting complex C over $\Gamma \otimes_k \Lambda^{op}.$

The following are equivalent:

- \blacksquare Γ and Λ are derived equivalent.
- There exists a one-sided tilting complex T over Γ with endomorphism algebra Λ^{op} .
- There exists a two-sided tilting complex C over $\Gamma \otimes_k \Lambda^{op}$.

The following are equivalent:

- $\$ Γ and Λ are derived equivalent.
- There exists a one-sided tilting complex T over Γ with endomorphism algebra Λ^{op} .
- There exists a two-sided tilting complex C over $\Gamma \otimes_k \Lambda^{op}$.

Fact on tilting complexes (Rickard, Keller)

T: one-sided tilting complex over Γ $\Lambda:=\operatorname{End}_{D^b(\Gamma)}(T)^{op}$

The following are equivalent:

- \blacksquare Γ and Λ are derived equivalent.
- There exists a one-sided tilting complex T over Γ with endomorphism algebra Λ^{op} .
- There exists a two-sided tilting complex C over $\Gamma \otimes_k \Lambda^{op}$.

Fact on tilting complexes (Rickard, Keller)

T: one-sided tilting complex over Γ $\Lambda := \operatorname{End}_{D^b(\Gamma)}(T)^{op}$ Then there exists a two-sided tilting complex C of Γ - Λ -bimodules satisfying $C \cong T$ in $D^b(\Gamma)$.

Motivation and Background

Question

T: one-sided tilting complex over Γ with $\operatorname{End}(T)^{op}\cong\Lambda$

Motivation and Background

Question

- T: one-sided tilting complex over Γ with $\operatorname{End}(T)^{op}\cong\Lambda$
- (1) Can we construct two-sided tilting complex C of Γ - Λ -bimodules satisfying $C \cong T$ in $D^b(\Gamma)$ by using concrete bimodules?

Motivation and Background

Question

- T: one-sided tilting complex over Γ with $\operatorname{End}(T)^{op}\cong\Lambda$
- (1) Can we construct two-sided tilting complex C of Γ - Λ -bimodules satisfying $C \cong T$ in $D^b(\Gamma)$ by using concrete bimodules?
- (2) Given an operation on a one-sided tilting complex Twhich produces another one-sided tilting complex T', then can we get an operation on the two-sided tilting complex C which produces a two-sided tilting complex C'satisfying $C' \cong T'$ in $D^b(\Gamma)$?

Yuta Kozakai Two-sided tilting complexes and folded tree-to-star complexes

Classification of Brauer tree algebras (Rickard)

Up to derived equivalence, a Brauer tree algebra is determined by the number of edges and multiplicity of Brauer tree.

Classification of Brauer tree algebras (Rickard)

Up to derived equivalence, a Brauer tree algebra is determined by the number of edges and multiplicity of Brauer tree.

The proof of this result is done by constructing a tree-to-star complex, that is a one-sided tilting complex with endomorphism ring Brauer star algebra.

Definition (Rickard-Schaps)

 $T: {\sf tree-to-star}\ {\sf complex}$

The following two kinds of operations on T are called foldings.

Definition (Rickard-Schaps)

 $T: {\sf tree-to-star}\ {\sf complex}$

The following two kinds of operations on T are called foldings.

• -2 shift of P(i) in the leftmost nonzero term of T where the edge i is not adjacent to the exceptional vertex.

Definition (Rickard-Schaps)

 $T: {\sf tree-to-star}\ {\sf complex}$

The following two kinds of operations on T are called foldings.

- -2 shift of P(i) in the leftmost nonzero term of T where the edge i is not adjacent to the exceptional vertex.
- -2 shift of $\bigoplus P(i)$ in the leftmost nonzero term of T where the edge i runs over all the edges adjacent to the exceptional vertex.

Definition (Rickard-Schaps)

 $T: {\sf tree-to-star}\ {\sf complex}$

The following two kinds of operations on \boldsymbol{T} are called foldings.

- -2 shift of P(i) in the leftmost nonzero term of T where the edge i is not adjacent to the exceptional vertex.
- -2 shift of $\bigoplus P(i)$ in the leftmost nonzero term of T where the edge i runs over all the edges adjacent to the exceptional vertex.

Theorem (Rickard-Schaps)

 $T: \mathsf{Rickard} \ \mathsf{tree-to-star} \ \mathsf{complex}$

 $T': {\rm complex}$ obtained by applying foldings to T several times Then T' is a tree-to-star complex again.

$$T = T_0 \xrightarrow{ ext{folding}} T_1 \xrightarrow{ ext{folding}} \cdots \xrightarrow{ ext{folding}} T_n = T'$$

- A : Brauer tree algebra with e edges and multiplicity μ
- B: Brauer star algebra with e edges and multiplicity μ
- $T: \mathsf{Rickard} \ \mathsf{tree-to-star} \ \mathsf{complex}$

- A : Brauer tree algebra with e edges and multiplicity μ
- B: Brauer star algebra with e edges and multiplicity μ
- $T: \mathsf{Rickard} \ \mathsf{tree-to-star} \ \mathsf{complex}$
- M: an indecomposable A-B-bimodule induing a stable equivalence of Morita type induced by T

- A : Brauer tree algebra with e edges and multiplicity μ
- B: Brauer star algebra with e edges and multiplicity μ
- $T: \mathsf{Rickard} \ \mathsf{tree-to-star} \ \mathsf{complex}$
- M: an indecomposable A-B-bimodule induing a stable equivalence of Morita type induced by T

Theorem (K-Kunugi), (K)

(1) We can construct a two-sided tilting complex C of A-B-bimodules satisfying $C_{\downarrow A} \cong T$ from a minimal projective resolution of M as an A-B-bimodule.

- A : Brauer tree algebra with e edges and multiplicity μ
- B: Brauer star algebra with e edges and multiplicity μ
- $T: \mathsf{Rickard} \ \mathsf{tree-to-star} \ \mathsf{complex}$
- M: an indecomposable A-B-bimodule induing a stable equivalence of Morita type induced by T

Theorem (K-Kunugi), (K)

- (1) We can construct a two-sided tilting complex C of A-B-bimodules satisfying $C_{\downarrow A} \cong T$ from a minimal projective resolution of M as an A-B-bimodule.
- (2) We can realize foldings as operations of two-sided tilting complexes of *A*-*B*-bimodules.

Ricakrd tree-to-star complex T and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

Ricakrd tree-to-star complex T and Rickard-Schaps tree-to-star complexes T_1 and T_2 are as follows,

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

- $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ \downarrow folding
- $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

- $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ \downarrow folding
- $T_1 = (2P(S_2)
 ightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

- $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ \downarrow folding
- $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

- $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ \downarrow folding
- $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

 \downarrow folding

 $T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5)
ightarrow 2P(S_2))$

- $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ \downarrow folding
- $T_1 = (2P(S_2)
 ightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

 \downarrow folding

 $T_2=(P(S_1)\oplus 3P(S_3)\oplus P(S_4)\oplus P(S_5)
ightarrow 2P(S_2))$

- $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ \downarrow folding
- $T_1 = (2P(S_2)
 ightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

 \downarrow folding

 $T_2=(P(S_1)\oplus 3P(S_3)\oplus P(S_4)\oplus P(S_5)
ightarrow 2P(S_2))$

We will construct a two-sided tilting complex C_i satisfying $C_i \cong T_i$ in $D^b(A)$ for each $i \in \{\emptyset, 1, 2\}$.

 V_i : simple *B*-module satisfying $S_i \cong \text{top} (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows:

 V_i : simple *B*-module satisfying $S_i \cong \text{top} (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows:

 $P(S_2)\otimes P(V_1)^*$ $P(S_1) \otimes P(V_1)^*$ \oplus (H) $P(S_1)\otimes P(V_2)^*$ $P(S_2)\otimes P(V_2)^*$ \oplus Æ $P(S_4) \otimes P(V_3)^* \rightarrow P(S_3) \otimes P(V_3)^* \rightarrow {}_AM_B$ \oplus \oplus $P(S_5)\otimes P(V_4)^*$ $P(S_4)\otimes P(V_4)^*$ \oplus Æ $P(S_5)\otimes P(V_5)^*$ $P(S_3)\otimes P(V_5)^*$

 V_i : simple *B*-module satisfying $S_i \cong top (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows: $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

$P(S_2)\otimes P(V_1)^*$	$P(S_1)\otimes P(V_1)^*$	
\oplus	\oplus	
$P(S_1)\otimes P(V_2)^*$	$P(S_2)\otimes P(V_2)^*$	
\oplus	\oplus	
$P(S_4)\otimes P(V_3)^* \hspace{0.2cm} ightarrow$	$P(S_3)\otimes P(V_3)^*$	$\rightarrow {}_{A}M_{B}$
\oplus	\oplus	
$P(S_5)\otimes P(V_4)^*$	$P(S_4)\otimes P(V_4)^*$	
\oplus	\oplus	
$P(S_3)\otimes P(V_5)^*$	$P(S_5)\otimes P(V_5)^*$	

 V_i : simple *B*-module satisfying $S_i \cong \text{top} (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows: $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

$P(S_2)\otimes P(V_1)^*$	$P(S_1)\otimes P(V_1)^*$	
\oplus	\oplus	
$P(S_1)\otimes P(V_2)^*$	$P(S_2)\otimes P(V_2)^*$	
\oplus	\oplus	
$P(S_4)\otimes P(V_3)^* \hspace{0.2cm} ightarrow$	$P(S_3)\otimes P(V_3)^*$	$\rightarrow {}_{A}M_{B}$
\oplus	\oplus	
$P(S_5)\otimes P(V_4)^*$	$P(S_4)\otimes P(V_4)^*$	
\oplus	\oplus	
$P(S_3)\otimes P(V_5)^*$	$P(S_5)\otimes P(V_5)^*$	

 V_i : simple *B*-module satisfying $S_i \cong top (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows: $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

 $P(S_1) \otimes P(V_1)^*$ \oplus $P(S_2)\otimes P(V_2)^*$ Æ $P(S_4) \otimes P(V_3)^* \rightarrow$ $P(S_3) \otimes P(V_3)^* \rightarrow {}_AM_B$ Æ \oplus $P(S_5)\otimes P(V_4)^*$ $P(S_4)\otimes P(V_4)^*$ \oplus Ð $P(S_3) \otimes P(V_5)^*$ $P(S_5) \otimes P(V_5)^*$

 V_i : simple *B*-module satisfying $S_i \cong \text{top} (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows: $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

 $P(S_1) \otimes P(V_1)^*$ \oplus $P(S_2)\otimes P(V_2)^*$ Æ $P(S_4) \otimes P(V_3)^* \rightarrow$ $P(S_3) \otimes P(V_3)^* \rightarrow {}_AM_B$ Æ \oplus $P(S_5)\otimes P(V_4)^*$ $P(S_4)\otimes P(V_4)^*$ \oplus Ð $P(S_3) \otimes P(V_5)^*$ $P(S_5) \otimes P(V_5)^*$

 V_i : simple *B*-module satisfying $S_i \cong top (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows: $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

 $P(S_2)\otimes P(V_2)^*$ Æ $P(S_4) \otimes P(V_3)^* \rightarrow$ $P(S_3) \otimes P(V_3)^* \rightarrow {}_AM_B$ Æ \oplus $P(S_5) \otimes P(V_4)^*$ $P(S_4)\otimes P(V_4)^*$ \oplus Ð $P(S_5)\otimes P(V_5)^*$ $P(S_3) \otimes P(V_5)^*$

 V_i : simple *B*-module satisfying $S_i \cong top (M \otimes_B V_i)$. Then a projective resolution of *M* is as follows: $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$

 $P(S_2)\otimes P(V_2)^*$ Æ $C: P(S_4) \otimes P(V_3)^* \rightarrow$ $P(S_3) \otimes P(V_3)^* \rightarrow {}_AM_B$ \oplus \oplus $P(S_5)\otimes P(V_4)^*$ $P(S_4)\otimes P(V_4)^*$ \oplus Ð $P(S_5)\otimes P(V_5)^*$ $P(S_3) \otimes P(V_5)^*$

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ $\downarrow \text{ folding}$ $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

$$P(S_2)\otimes P(V_2)^* \oplus \oplus$$

 \oplus
 $C : P(S_4)\otimes P(V_3)^* o P(S_3)\otimes P(V_3)^* o_A M_B$
 $\oplus \oplus \oplus$
 $P(S_5)\otimes P(V_4)^* o P(S_4)\otimes P(V_4)^*$
 $\oplus \oplus$
 $P(S_3)\otimes P(V_5)^* P(S_5)\otimes P(V_5)^*$

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \to 2P(S_2) \to P(S_1))$ $\downarrow \text{ folding}$ $T_1 = (2P(S_2) \to P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

$$P(S_2)\otimes P(V_2)^* \oplus \oplus$$

 \oplus
 $C : P(S_4)\otimes P(V_3)^* o P(S_3)\otimes P(V_3)^* o_A M_B$
 $\oplus \oplus \oplus$
 $P(S_5)\otimes P(V_4)^* o P(S_4)\otimes P(V_4)^*$
 $\oplus \oplus$
 $P(S_3)\otimes P(V_5)^* P(S_5)\otimes P(V_5)^*$

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \to 2P(S_2) \to P(S_1))$ $\downarrow \text{ folding}$ $T_1 = (2P(S_2) \to P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \to 2P(S_2) \to P(S_1))$ $\downarrow \text{ folding}$ $T_1 = (2P(S_2) \to P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ $\downarrow \text{ folding}$ $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

Yuta Kozakai Two-sided tilting complexes and folded tree-to-star complexes

 $T = (3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2) \rightarrow P(S_1))$ $\downarrow \text{ folding}$ $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$

Yuta Kozakai Two-sided tilting complexes and folded tree-to-star complexes

Remark

Since $C_1 = (P(S_2) \otimes P(V_2)^* \to M)$ is isomorphic to $(P(S_2) \otimes P(V_2)^* \rightarrow I(M) \twoheadrightarrow \Omega^{-1}M)$ in $D^b(A)$, we can write C_1 as follows: $P(S_1) \otimes P(V_1)^*$ (H) $P(S_2) \otimes P(V_2)^* = P(S_3) \otimes P(V_2)^*$ Æ $\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow {}_A\Omega^{-1}M_B$ C_1 : Æ $P(S_4) \otimes P(V_4)^*$ Æ $P(S_5) \otimes P(V_5)^*$

Remark

Since $C_1 = (P(S_2) \otimes P(V_2)^* \to M)$ is isomorphic to $(P(S_2) \otimes P(V_2)^* \rightarrow I(M) \twoheadrightarrow \Omega^{-1}M)$ in $D^b(A)$, we can write C_1 as follows: $P(S_1) \otimes P(V_1)^*$ Ð $P(S_2) \otimes P(V_2)^* = P(S_3) \otimes P(V_2)^*$ Ð $\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow {}_A\Omega^{-1}M_B$ $C_1:$ Æ $P(S_4) \otimes P(V_4)^*$ Ð $P(S_5) \otimes P(V_5)^*$

$$\begin{split} T_1 &= (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5)) \\ \downarrow \text{ folding} \\ T_2 &= (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2)) \end{split}$$

 $P(S_1)\otimes P(V_1)^*$ \oplus $P(S_2)\otimes P(V_2)^*$ $P(S_3)\otimes P(V_2)^*$ Ð $C_{1}:$ $\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow {}_A\Omega^{-1}M_B$ Ð $P(S_4) \otimes P(V_4)^*$ \oplus $P(S_5) \otimes P(V_5)^*$

 $T_1 = (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5))$ $\downarrow \text{ folding}$ $T_2 = (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2))$

 $P(S_1)\otimes P(V_1)^*$ \oplus $P(S_2)\otimes P(V_2)^*$ $P(S_3)\otimes P(V_2)^*$ Ð $C_{1}:$ $\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow {}_A\Omega^{-1}M_B$ Ð $P(S_4) \otimes P(V_4)^*$ \oplus $P(S_5) \otimes P(V_5)^*$

$$\begin{split} T_1 &= (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5)) \\ \downarrow \text{ folding} \\ T_2 &= (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2)) \end{split}$$

 $P(S_1)\otimes P(V_1)^*$ \oplus $P(S_2) \otimes P(V_2)^* = P(S_3) \otimes P(V_2)^*$ Ð $C_{1}:$ $\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow {}_A\Omega^{-1}M_B$ Ð $P(S_4) \otimes P(V_4)^*$ \oplus $P(S_5) \otimes P(V_5)^*$

$$\begin{split} T_1 &= (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5)) \\ \downarrow \text{ folding} \\ T_2 &= (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2)) \end{split}$$

 $P(S_1)\otimes P(V_1)^*$ \oplus $P(S_2)\otimes P(V_2)^*$ $P(S_3)\otimes P(V_2)^*$ Ð $C_{1}:$ $\rightarrow P(S_2) \otimes P(V_3)^* \rightarrow {}_A\Omega^{-1}M_B$ Ð $P(S_4) \otimes P(V_4)^*$ \oplus $P(S_5) \otimes P(V_5)^*$

$$\begin{split} T_1 &= (2P(S_2) \rightarrow P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5)) \\ \downarrow \text{ folding} \\ T_2 &= (P(S_1) \oplus 3P(S_3) \oplus P(S_4) \oplus P(S_5) \rightarrow 2P(S_2)) \end{split}$$

 $P(S_1)\otimes P(V_1)^*$ \oplus $P(S_3)\otimes P(V_2)^*$ $|\to P(S_2)\otimes P(V_3)^* \to {}_A\Omega^{-1}M_B$ $C_{2}:$ \oplus $P(S_4) \otimes P(V_4)^*$ \oplus $P(S_5) \otimes P(V_5)^*$

Yuta Kozakai Two-sided tilting complexes and folded tree-to-star complexes