A necessary condition for two commutative Noetherian rings to be singularly equivalent

Hiroki Matsui

Nagoya University

October 7, 2017

Introduction

Definition

R: a (not necessarily) commutative Noetherian ring. The singularity category of R is

 $D_{sg}(R) := D^{b} (mod R) / K^{b} (proj R).$

- A triangulated category
- Introduced by Buchweitz by the name of stable derived category
- Measures singularity of R: R is regular $\Leftrightarrow D_{sg}(R) \cong 0$

Introduction

Definition

Commutative Noetherian rings R, S are signarly equivalent, denoted by $R \stackrel{\text{sg}}{\sim} S$, if there is a triangle equivalence $D_{\text{sg}}(R) \cong D_{\text{sg}}(S)$.

Example

R
$$\cong$$
 S \Rightarrow R $\stackrel{\text{sg}}{\sim}$ S
 R, S: regular \Rightarrow R $\stackrel{\text{sg}}{\sim}$ S
 (Knörrer's periodicity)
 Let k be an algebraically closed field of characteristic 0 and
 0 \neq f \in (x₀,...,x_d) \subseteq k[[x₀,...,x_d]]. Set
 R := k[[x₀, x₁,...,x_d]]/(f) and S := k[[x₀, x₁,...,x_d, u, v]]/(f + uv).
 Then
 $P_{\text{sg}} = Q_{\text{sg}}$

$$R \stackrel{\text{sg}}{\sim} S.$$

Introduction

Observation: all of these singular equivalences, singular loci Sing R and Sing S are homeomorphic.

$$Sing S = V(f_{x_0}, \dots f_{x_d}, u, v)$$

$$\cong Spec(S/(f_{x_0}, \dots f_{x_d}, u, v))$$

$$\cong Spec(R/(f_{x_0}, \dots f_{x_d}))$$

$$\cong V(f_{x_0}, \dots f_{x_d}) = Sing R$$

The first and the last equalities are known as the Jacobian criterion.

Question

Does $R \stackrel{\text{sg}}{\sim} S \Rightarrow \text{Sing } R \cong \text{Sing } S$ hold?

Notations

Let \mathcal{T} be an essentially small triangulated category and X a topological space.

Definition

 $\textcircled{O} An additive full subcategory \mathcal{X} of \mathcal{T} is thick if}$

•
$$\mathcal{X}[1] = \mathcal{X}_{i}$$

• for a triangle $L \to M \to N \to L[1]$, $L, N \in \mathcal{X} \Rightarrow M \in \mathcal{X}$,

•
$$L \oplus M \in \mathcal{X} \Rightarrow L, M \in \mathcal{T}.$$

 $\mathsf{Th}(\mathcal{T}) := \{ \text{ thick subcategories of } \mathcal{T} \}$

2 A subset W of X is specialization closed if

$$x \in W \Rightarrow \overline{\{x\}} \subseteq W$$

 $(\Leftrightarrow W \text{ is a union of closed subsets}).$ Spcl $(X) := \{ \text{ specialization closed subsets of } X \}$

 $\ensuremath{\mathcal{T}}$: an essentially small triangulated category

Definition

A support data for \mathcal{T} is a pair (X, σ) :

- X: a topological space.
- $\sigma(M)$: a closed subset of X for each $M \in \mathcal{T}$.

such that

$$\ \ \, o(M[n]) = \sigma(M) \ \, \text{for} \ \, \forall n \in \mathbb{Z},$$

$$\ \circ \ \ \sigma(M \oplus N) = \sigma(M) \cup \sigma(N),$$

• For a triangle $L \to M \to N \to L[1]$, $\sigma(M) \subseteq \sigma(L) \cup \sigma(N)$.

Example

Let X be a Noetherian scheme. Then the cohomological support:

$$\operatorname{Supp}_X(M) := \{x \in X \mid M_x \not\cong 0 \text{ in } \operatorname{D}^{\operatorname{perf}}(\mathcal{O}_{X,x})\}$$

defines a support data $(X, \operatorname{Supp}_X)$ for the perfect derived category $D^{\operatorname{perf}}(X)$.

- Let k be a field and G a finite group. Then support variety gives a support data (Proj H*(G; k), V_G) for the stable module category mod kG.
- Solution For a commutative Noetherian ring *R*, the singular support:

 $\mathrm{SSupp}_R(M) := \{\mathfrak{p} \in \mathrm{Sing}\, R \mid M_\mathfrak{p} \not\cong 0 \text{ in } \mathrm{D}_{\mathrm{sg}}(R_\mathfrak{p})\}$

defines a support data (Sing R, SSupp_R) for $D_{sg}(R)$

Let
$$(X, \sigma)$$
 be a support data for \mathcal{T} .
For $\mathcal{X} \in \text{Th}(\mathcal{T})$ and $W \in \text{Spcl}(X)$,
• $f_{\sigma}(\mathcal{X}) := \bigcup_{M \in \mathcal{X}} \sigma(M) \in \text{Spcl}(X)$,
• $g_{\sigma}(W) := \{M \in \mathcal{T} \mid \sigma(M) \subseteq W\} \in \text{Th}(\mathcal{T})$.

Thus, we obtain maps

$$\mathsf{Th}(\mathcal{T}) \xrightarrow[g_{\sigma}]{f_{\sigma}} \mathsf{Spcl}(X).$$

Definition

A support data (X, σ) is called a classifying support data if

• X is a Noetherian sober space.

2)
$$f_{\sigma} \circ g_{\sigma} = 1$$
 and $g_{\sigma} \circ f_{\sigma} = 1$.

X, $\operatorname{Proj} H^*(G; k)$, $\operatorname{Sing} R$ are Noetherian and sober.

Theorem A

Let (X, σ) and (X', σ') be classifying support data for essentially small triangulated categories \mathcal{T} and \mathcal{T}' , respectively. Then

$$\mathcal{T}\cong \mathcal{T}' \Longrightarrow \exists \varphi: X \xrightarrow{\cong} X' \text{ s.t. } \sigma' = \varphi \circ \sigma$$

holds.

Theorem [Thomason (1997)]

Let X be a Noetherian scheme and \mathcal{L} an ample line bundle. Then there is a one-to-one correspondence

$$\{\mathcal{X} \in \mathsf{Th}(\mathsf{D}^{\mathsf{perf}}(X)) \mid \mathcal{L}^{-1} \otimes_{\mathcal{O}_X}^{\mathbb{L}} \mathcal{X} \subseteq \mathcal{X}\} \xrightarrow[g_{\mathsf{Supp}}]{f_{\mathsf{Supp}}} \mathsf{Spcl}(X).$$

Corollary

Let X and Y be Noetherian quasi-affine schemes (i.e., open subschemes of affine schemes). Then

$$D^{perf}(X) \cong D^{perf}(Y) \Longrightarrow X \cong Y$$
: homeo
 $\Longrightarrow \dim X = \dim Y.$

X is quasi-affine $\Leftrightarrow \mathcal{O}_X$ is ample

Theorem [Benson-lyenger-Krause (2012)]

Let k be a field of characteristic p and G be a finite group with $p \mid |G|$. Then there is a one-to-one correspondence

$$\{\mathcal{X} \in \mathsf{Th}(\underline{\mathsf{mod}} \ kG) \mid S \otimes_k \mathcal{X} \subseteq \mathcal{X}, \ \forall S : \mathsf{simple}\} \xrightarrow[g_{V_G}]{t_{V_G}} \mathsf{Spcl}(\mathsf{Proj} \ \mathsf{H}^*(G; k)).$$

Corollary

Let k (resp. l) be a field of characteristic p (resp. q) and G (resp. H) be a finite p-group (resp. q-group). Then

$$\underline{\text{mod}} \ kG \cong \underline{\text{mod}} \ IH \Longrightarrow \operatorname{Proj} \operatorname{H}^*(G; k) \cong \operatorname{Proj} \operatorname{H}^*(H; I): \text{ homeo} \\ \Longrightarrow r_p(G) = r_q(H).$$

• G is a p-group $\Rightarrow kG$ has only one simple k • dim H^{*}(G; k) = $r_p(G) := \sup\{n \mid (\mathbb{Z}/(p))^n \leq G\}$: the p-rank of G.

Singular equivalence

For a commutative Noetherian local ring R, consider the condition:

(*) $R_{\mathfrak{p}}$ is hypersurface for any non-maximal \mathfrak{p} .

Theorem [Takahashi (2010)]

Let (R, \mathfrak{m}, k) be a Gorenstein local ring satisfying (*). Then there is a one-to-one correspondence

$$\{\mathcal{X} \in \mathsf{Th}(\mathsf{D}_{\mathsf{sg}}(R)) \mid k \in \mathcal{X}\} \xrightarrow[\mathcal{S}_{\mathsf{SSupp}}]{t_{\mathsf{SSupp}}} \{W \in \mathsf{Spcl}(\mathsf{Sing}\,R) \mid W \neq \emptyset\}.$$

$$\implies$$
 Th(D_{sg}(R)/thick k) $\stackrel{\cong}{\Longrightarrow}$ Spcl(Sing $R \setminus \{\mathfrak{m}\}$).

Problem

Whether the condition "containing the residue field k" is preserved by singular equivalence.

Test objects

Definition

An object $M \in \mathcal{T}$ is a test object if for any $N \in \mathcal{T}$,

$$\operatorname{Hom}_{\mathcal{T}}(M, N[i]) = 0 \text{ for } i \gg 0 \Rightarrow N \cong 0.$$

Remark

● For a Gorenstein local ring (R, m, k), test objects of D_{sg}(R) ≈ test modules T: for any N,

$$\operatorname{Tor}_{\gg 0}(T, N) = 0 \Longrightarrow \operatorname{pd}_R N < \infty.$$

In particular, k is a test object.

Itest objects are preserved by triangle equivalences.

Main Theorem

Proposition

Let (R, \mathfrak{m}, k) be a complete intersection ring and T a test object of $D_{sg}(R)$. Then $k \in \text{thick}_{D_{sg}(R)}(T)$.

 \implies for $\mathcal{X} \in \mathsf{Th}(\mathsf{D}_{\mathsf{sg}}(R))$, $k \in \mathcal{X}$ iff \mathcal{X} contains a test object.

Corollary

Let (R, \mathfrak{m}, k) and (S, \mathfrak{n}, l) be complete intersection rings. Then

$$R \stackrel{sg}{\sim} S \Rightarrow \mathsf{D}_{sg}(R) / \operatorname{thick} k \cong \mathsf{D}_{sg}(S) / \operatorname{thick} I.$$

Theorem B

Let R and S be local complete intersection rings satisfying (*). Then

$$R \stackrel{\text{sg}}{\sim} S \Longrightarrow \operatorname{Sing} R \cong \operatorname{Sing} S.$$

Lemma

Let R be a Gorenstein local ring and $\mathfrak{p} \in \operatorname{Spec} R$. Then $\mathcal{X}_{\mathfrak{p}} := \{ M \in \mathsf{D}_{sg}(R) \mid M_{\mathfrak{p}} \not\cong 0 \}$ is thick and

$$\mathsf{D}_{\mathsf{sg}}(R)/\mathcal{X}_{\mathfrak{p}}\cong\mathsf{D}_{\mathsf{sg}}(R_{\mathfrak{p}}).$$

Corollary

Let *R* and *S* be local complete intersection rings satisfying (*). If $R \stackrel{\text{sg}}{\sim} S$, then $\exists \varphi : \text{Sing } R \stackrel{\cong}{\longrightarrow} \text{Sing } S$, such that

$$R_{\mathfrak{p}}\overset{\mathrm{sg}}{\sim} S_{\varphi(\mathfrak{p})}$$
 for $\forall \mathfrak{p} \in \mathsf{Sing} R$.

Recall (Knörrer's periodicity)

Let k be an algebraically closed field of characteristic 0 and $0 \neq f \in (x_0, \dots, x_d) \subseteq k[[x_0, \dots, x_d]]$. Then

$$k[[x_0,\ldots,x_d]]/(f) \stackrel{sg}{\sim} k[[x_0,\ldots,x_d,u,v]]/(f+uv)$$

Corollary

Let k and f be as above. Assume that $k[[x_0, \ldots, x_d]]/(f)$ has an isolated singularity. Then

$$k[[x_0,\ldots,x_d,y]]/(y^2,f) \stackrel{\text{sg}}{\sim} k[[x_0,\ldots,x_d,y,u,v]]/(y^2,f+uv).$$

 \Rightarrow Knörrer's periodicity fails for non-regular ring $k[[x_0, \dots, x_d, y]]/(y^2)$.

Thank you for your kind attention.