Central elements of the Jennings basis and certain Morita invariants

Taro Sakurai

October 7, 2017

T. Sakurai (Chiba Univ.)

- 2 Jennings theory
- 3 Example

4 Main theorem

- 2 Jennings theory
- 3 Example

4 Main theorem

- F: an algebraically closed field of characteristic p > 0
- G: a finite group
- \blacksquare A,B: finite-dimensional (unital associative) algebras over F

- F: an algebraically closed field of characteristic p > 0
- G: a finite group
- \blacksquare A,B: finite-dimensional (unital associative) algebras over F
- Socⁿ (A): the *n*th (right) socle of A

- F: an algebraically closed field of characteristic p > 0
- G: a finite group
- \blacksquare A,B: finite-dimensional (unital associative) algebras over F
- Socⁿ (A): the *n*th (right) socle of A
- $ZS^n(A) := Z(A) \cap Soc^n(A)$: an ideal of the center Z(A)

- F: an algebraically closed field of characteristic p > 0
- G: a finite group
- \blacksquare A,B: finite-dimensional (unital associative) algebras over F
- Socⁿ (A): the *n*th (right) socle of A
- $ZS^n(A) := Z(A) \cap Soc^n(A)$: an ideal of the center Z(A)

Ι	dim I	a basis of I
Z(FG)	the number of irreducible ordinary characters	conjugacy class sums

Ι	dim I	a basis of I
Z(FG)	the number of irreducible ordinary characters	conjugacy class sums
$ZS^1(FG)$ (Reynolds ideal)	the number of irreducible modular characters	<i>p</i> -regular section sums

Ι	dim I	a basis of I
Z(FG)	the number of irreducible ordinary characters	conjugacy class sums
$ZS^1(FG)$ (Reynolds ideal)	the number of irreducible modular characters	<i>p</i> -regular section sums
1	\uparrow	\uparrow
ideals in question	representation-theoretic numbers	group-theoretic descriptions

Ι	dim I	a basis of I
Z(FG)	the number of irreducible ordinary characters	conjugacy class sums
$ZS^n(FG)$?	?
$ZS^1(FG)$ (Reynolds ideal)	the number of irreducible modular characters	<i>p</i> -regular section sums
\uparrow	\uparrow	Ť
ideals in question	representation-theoretic numbers	group-theoretic descriptions

Theorem 1.1 (S.)

Let A and B be Morita equivalent. Then there is an algebra isomorphism

 $Z(A) \rightarrow Z(B)$

mapping $ZS^n(A)$ onto $ZS^n(B)$ for every $n \in \mathbb{N}$. In particular, $ZS^n(A)$ are Morita invariants.

Theorem 1.1 (S.)

Let A and B be Morita equivalent. Then there is an algebra isomorphism

 $Z(A) \rightarrow Z(B)$

mapping $ZS^n(A)$ onto $ZS^n(B)$ for every $n \in \mathbb{N}$. In particular, $ZS^n(A)$ are Morita invariants.

Theorem 1.1 (S.)

Let A and B be Morita equivalent. Then there is an algebra isomorphism

 $Z(A) \to Z(B)$

mapping $ZS^n(A)$ onto $ZS^n(B)$ for every $n \in \mathbb{N}$. In particular, $ZS^n(A)$ are Morita invariants.

Namely, the dimension of $ZS^n(A)$ could be described representation-theoretically as well.

2 Jennings theory

3 Example

4 Main theorem

T. Sakurai (Chiba Univ.)

Let G be a finite p-group.

Let G be a finite p-group.

Theorem 2.1 (Jennings)

There are elements $\{g_{ij} \in G \mid 1 \le i < t, 1 \le j \le r_i\}$ such that

$$\operatorname{Soc}^{n}(FG) = \bigoplus F \prod_{\substack{1 \le i < t \\ 1 \le j \le r_{i}}}^{\prime} (g_{ij} - 1)^{m_{ij}}$$

for every integer $n \ge 0$ where the direct sum is taken for all integers $0 \le m_{ij} < p$ satisfying $\sum_{\substack{1 \le i < t \\ 1 \le j \le r_i}} i(p-1-m_{ij}) < n$.

Let G be a finite p-group.

Theorem 2.1 (Jennings)

There are elements $\{g_{ij} \in G \mid 1 \le i < t, 1 \le j \le r_i\}$ such that

$$\operatorname{Soc}^{n}(FG) = \bigoplus F \prod_{\substack{1 \le i < t \\ 1 \le j \le r_{i}}}^{\prime} (g_{ij} - 1)^{m_{ij}}$$

for every integer $n \ge 0$ where the direct sum is taken for all integers $0 \le m_{ij} < p$ satisfying $\sum_{\substack{1 \le i < t \\ 1 \le j \le r_i}} i(p-1-m_{ij}) < n$.

Remark 2.2

The g_{ij} are described by the *dimension subgroups* D_i of G.

Let G be a finite p-group.

Theorem 2.1 (Jennings)

There are elements $\{ g_{ij} \in G \mid 1 \le i < t, 1 \le j \le r_i \}$ such that

$$\operatorname{Soc}^{n}(FG) = \bigoplus F \prod_{\substack{1 \le i < t \\ 1 \le j \le r_{i}}}^{\prime} (g_{ij} - 1)^{m_{ij}}$$

for every integer $n \ge 0$ where the direct sum is taken for all integers $0 \le m_{ij} < p$ satisfying $\sum_{\substack{1 \le i < t \\ 1 \le j \le r_i}} i(p-1-m_{ij}) < n$.

Remark 2.2

The g_{ij} are described by the *dimension subgroups* D_i of G.

Definition 2.3 (Jennings basis)

The basis $\left\{\prod_{\substack{1 \le i < t \\ 1 \le j \le r_i}} (g_{ij} - 1)^{m_{ij}}\right\}$ of *FG* is said to be the *Jennings basis*.

4 Main theorem

T. Sakurai (Chiba Univ.)

Let G be an extra-special p-group of order p^3 and exponent p > 2 defined by

$$G := p_+^{1+2} = \langle a, b, c \mid a^p = b^p = c^p = [a, c] = [b, c] = 1, \ [b, a] = c \rangle$$

and set x := a - 1, y := b - 1, and z := c - 1.

Let *G* be an extra-special *p*-group of order p^3 and exponent p > 2 defined by

$$G := p_{+}^{1+2} = \langle a, b, c \mid a^{p} = b^{p} = c^{p} = [a, c] = [b, c] = 1, \ [b, a] = c \rangle$$

and set x := a - 1, y := b - 1, and z := c - 1. Then

 $\{x^i y^j z^k \mid 0 \le i, j, k < p\}$

is a Jennings basis of FG and we can show

$$ZS^{n}(FG) = \bigoplus_{\substack{0 \le i, j$$

Let *G* be an extra-special *p*-group of order p^3 and exponent p > 2 defined by

$$G := p_{+}^{1+2} = \langle a, b, c \mid a^{p} = b^{p} = c^{p} = [a, c] = [b, c] = 1, \ [b, a] = c \rangle$$

and set x := a - 1, y := b - 1, and z := c - 1. Then

 $\{x^i y^j z^k \mid 0 \le i, j, k < p\}$

is a Jennings basis of FG and we can show

$$ZS^{n}(FG) = \bigoplus_{\substack{0 \le i, j$$

- 2 Jennings theory
- 3 Example

4 Main theorem

Main theorem

■ D_s : the *s*th dimension subgroup of *G* (Remark: $D_2 \ge [G,G]$) ■ $ZS^n(FG) := Z(FG) \cap Soc^n(FG)$

Main theorem

■ D_s : the *s*th dimension subgroup of *G* (Remark: $D_2 \ge [G,G]$) ■ $ZS^n(FG) := Z(FG) \cap \operatorname{Soc}^n(FG)$

Theorem 4.1 (S.)

Suppose $s \in \mathbb{N}$ satisfies $D_s \ge [G,G]$. Then an element of the Jennings basis of the form

$$\prod_{\substack{\le i < s \\ < j < r_i}} (g_{ij} - 1)^{m_{ij}} \prod_{\substack{s \le i < t \\ 1 \le j \le r_i}} (g_{ij} - 1)^{p-1}$$

is central for every integers $0 \le m_{ij} < p$.

Main theorem

■ D_s : the *s*th dimension subgroup of *G* (Remark: $D_2 \ge [G,G]$) ■ $ZS^n(FG) := Z(FG) \cap \operatorname{Soc}^n(FG)$

Theorem 4.1 (S.)

Suppose $s \in \mathbb{N}$ satisfies $D_s \ge [G,G]$. Then an element of the Jennings basis of the form

$$\prod_{\substack{1 \le i < s \\ \le j \le r_i}} (g_{ij} - 1)^{m_{ij}} \prod_{\substack{s \le i < t \\ 1 \le j \le r_i}} (g_{ij} - 1)^{p-1}$$

is central for every integers $0 \le m_{ij} < p$. In particular, for every $n \in \mathbb{N}$, we have

$$ZS^{n}(FG) \supseteq \bigoplus F \prod_{\substack{1 \le i < s \\ 1 \le j \le r_i}}^{\prime} (g_{ij} - 1)^{m_{ij}} \prod_{\substack{s \le i < t \\ 1 \le j \le r_i}}^{\prime} (g_{ij} - 1)^{p-1}$$

where the direct sum is taken for all integers $0 \le m_{ij} < p$ satisfying

$$\sum_{\substack{1 \le i < s \\ \le j \le r_i}} i(p-1-m_{ij}) < n.$$