Bricks over preprojective algebras

Sota Asai, Nagoya University

2017.10.08,

The 50th Symposium on Ring Theory and Representation Theory

Setting

- *K*: a field.
- Δ : a Dynkin diagram.
- Π : the preprojective *K*-algebra for Δ .
- mod Π : the category of fin. dim. left Π -modules.

Semibricks

Definition

Let $S \in \text{mod } \Pi$.

- (1) S: a brick : \iff End $_{\Pi}(S)$ is a division *K*-algebra. brick $\Pi := \{ all bricks in mod \Pi \}.$
- (2) S: a semibrick : \iff $S = \bigoplus_{i=1}^{m} S_i$ with each S_i a brick and $\operatorname{Hom}_{\Pi}(S_i, S_j) = 0$ for $i \neq j$. sbrick $\Pi := \{ \text{all semibricks in mod } \Pi \}.$

Lattices

Definition

A poset *L* is called a lattice if *L* admits the meet $x \land y$ and the join $x \lor y$ for $x, y \in L$. j-irr *L* := {all join-irreducible elements in *L*}.

- W: the Coxeter group for Δ (a finite group).
- $\{s_i\}_{i \in \Delta_0}$: the generators of W.
- $\leq = \leq_L$: the left weak order on *W*.
- torf $\Pi := \{ \text{torsion-free classes in mod } \Pi \}.$

Lemma

$$(W, \leq)$$
 and $(torf \Pi, \subset)$ are lattices.

Bijections

Let $w = s_{i_1}s_{i_2}\cdots s_{i_l} \in W$ be a reduced expression.

- $I(w) := I_{i_1}I_{i_2}\cdots I_{i_l} \subset \Pi$: an ideal.
- $J(w) := \Pi/I(w)$.

Proposition [Mizuno]

There exists an isomorphism $(W, \leq) \rightarrow (\text{torf }\Pi, \subset)$ of finite lattices given by $w \mapsto \text{Sub } J(w)$.

Coxeter groups and semibricks

Proposition [A]

There exist bijections

 $W \to \operatorname{sbrick} \Pi$, j-irr $W \to \operatorname{brick} \Pi$ given by $w \mapsto S(w) := \operatorname{soc}_{\operatorname{End}_{\Pi}(J(w))} J(w)$.

- There is a combinatorial result on J(w) for $w \in j$ -irr W [Iyama–Reading–Reiten–Thomas].
- Thus, if $w \in j$ -irr W, then one can calculate $S(w) \in \text{brick } \Pi$.

Q & A

Question

Let $w \in W$ and $w_1, w_2, \ldots, w_m \in j$ -irr W satisfy $S(w) = \bigoplus_{i=1}^m S(w_i) \in \text{sbrick } \Pi.$ Then, how are w and w_1, w_2, \ldots, w_m related?

Theorem [A]

 $w = \bigvee_{i=1}^{m} w_i$ is the canonical join representation.

 w_1, w_2, \ldots, w_m are the "minimal generators" of w.

Canonical join representations

Let L be a finite lattice.

Definition [Reading]

Let $x \in L$ and $U \subset j$ -irr L satisfy $x = \bigvee_{u \in U} u$.

 $x = \bigvee_{u \in U} u$: a canonical join representation : \iff

(a) for any
$$U' \subsetneq U, x \neq \bigvee_{u \in U'} u$$
;

- (b) if $V \subset j$ -irr L satisfies $x = \bigvee_{v \in V} v$ and (a), then $\forall u \in U, \exists v \in V$ such that $u \leq v$.
 - If a canonical join representation of *x* ∈ *L* exists, then it is unique.
 - Every $w \in W$ has a canonical join representation, though it does not hold for general finite lattices.

Conclusion

In my poster...

- similar observations holding for general *τ*-tilting finite algebras;
- an explicit way to get canonical join representations in the case Δ = A_n;
- a description of brick S(w) for $w \in j$ -irr W in the case $\Delta = \mathbb{A}_n$.

Thank you very much.