Dhiren Kumar Basnet

Tezpur University, India

50th Symposium on Ring Theory and Representation Theory (2017) University of Yamanashi

(This paper is a joint work with J. Dutta.)

・ 回 ト ・ ヨ ト ・ ヨ ト

- **2** Some properties of $\Gamma_{S,R}$
- **3** Relation between $\Gamma_{S,R}$ and Pr(S,R)
- **4** Relation between $\Gamma_{S,R}$ and \mathbb{Z} -isoclinism

5 Reference

個 と く ヨ と く ヨ と

3

SQC

Introduction

Definition

Let *R* be a finite ring. The non-commuting graph of *R*, denoted by Γ_R , is a simple undirected graph whose vertex set is $R \setminus Z(R)$ and two distinct vertices *a* and *b* are adjacent if and only if $ab \neq ba$.

• In 2015, Erfanian et al. [3] initiated the study of the non-commuting graph of a finite ring R.

- 4 同下 4 国下 - 4 国下

Introduction

Motivated by the works of Tolue and Erfanian [5], we have defined the following graph.

Definition

Let S be a subring of a finite ring R and $C_R(S) = \{r \in R : rs = sr \forall s \in S\}$. The relative non-commuting graph of the subring S in R, denoted by $\Gamma_{S,R}$, is a simple undirected graph whose vertex set is $R \setminus C_R(S)$ and two distinct vertices a, b are adjacent if and only if a or $b \in S$ and $ab \neq ba$.

- For S = R, $\Gamma_{S,R} = \Gamma_R$, the non-commuting graph of R.
- $\Gamma_{S,R}$ is empty graph if and only if S is commutative. $I \equiv I = I = I$ Dhiren Kumar Basnet Tezpur University. India Relative non-commuting graph of a finite ring

Let \mathcal{G} be a graph. We write

• $V(\mathcal{G}) :=$ the set of vertices of \mathcal{G} ,

•
$$E(\mathcal{G}) :=$$
 the set of edges of \mathcal{G} ,

- diam(G) := max{d(x, y) : x, y ∈ V(G)}, where d(x, y) is the length of the shortest path from x to y,
- $girth(\mathcal{G}) :=$ the length of the shortest cycle obtained in \mathcal{G} .

(本間) (本語) (本語) (二語)

Our results

We have obtained the following main results.

Theorem 1

Let S be a non-commutative subring of a finite ring R. Then

1 deg
$$(r) = |R| - |C_R(r)|$$
 if $r \in V(\Gamma_{S,R}) \cap S$.

2 deg
$$(r) = |S| - |C_S(r)|$$
 if $r \in V(\Gamma_{S,R}) \cap (R \setminus S)$.

Theorem 2

Let S be a non-commutative subring of a ring R. If $Z(S) = \{0\}$ then $diam(\Gamma_{S,R}) = 2$ and $girth(\Gamma_{S,R}) = 3$.

・ロト ・回ト ・ヨト ・

Э

Some families of graphs

Star graph: A star graph is a tree on *n* vertices in which one vertex has degree n - 1 and the others have degree 1.

Regular graph: A regular graph is a graph where each vertex has the same degree or valency.

Bipartite graph: A bipartite graph is a graph whose vertex set can be partitioned into two disjoint parts in such a way that the two end vertices of every edge lie in different parts.

Complete graph: A complete graph is a graph in which every pair of distinct vertices is adjacent.

- 4 同下 4 国下 - 4 国下

Our Result

We have obtained the following result.

Theorem 3

Let S be non-commutative subgroup a finite ring R. Then

- **1** $\Gamma_{S,R}$ is not a star graph or a bipartite graph.
- **2** $\Gamma_{S,R}$ is not an *n*-regular graph for any square free odd positive integer *n*, where *S* is a proper subring of *R*.
- **3** $\Gamma_{S,R}$ is not a complete graph, where R has unity.

Our result

Let \mathcal{G} be a graph and D a subset of $V(\mathcal{G})$. D is called a dominating set for \mathcal{G} if every vertex in $V(\mathcal{G}) \setminus D$ is adjacent to at least one member of D.

We have obtained the following results.

Theorem 4

Let S be a subring of a ring R and $A \subseteq V(\Gamma_{S,R})$. Then A is a dominating set for $\Gamma_{S,R}$ if and only if $C_R(A) \subseteq A \cup C_R(S)$.

Our result

Theorem 5

Let *R* be a finite non-commutative ring with unity and *S* a subring of *R*. Let $A = \{s_1, s_2, \ldots, s_n\}$ is a generating set for *S* and $A \cap C_R(S) = \{s_{m+1}, \ldots, s_n\}$ then $D = \{s_1, s_2, \ldots, s_m\} \cup \{s_1 + s_{m+1}, s_2 + s_{m+2}, \ldots, s_1 + s_n\}$ is a dominating set for $\Gamma_{S,R}$.

- 本部 ト イヨト - - ヨ

Relation between $\Gamma_{S,R}$ and $\Pr(S,R)$

Our results

In [2], we have defined the relative commuting probability of Rrelative to a subring S of R as the ratio $\Pr(S, R) \in S \times R : sr = rs\}|$

$$\Pr(S,R) := \frac{|\{(s,r) \in S \times R : sr = rs\}|}{|S||R|}.$$

We have obtained the following relation between $|E(\Gamma_{S,R})|$ and Pr(S, R).

Theorem 6

Let S be a subring of a ring R. Then the number of edges of $\Gamma_{S,R}$ is

$$|E(\Gamma_{S,R})| = |S||R|(1 - \Pr(S, R)) - \frac{|S|^2}{2}(1 - \Pr(S)).$$

Relation between $\Gamma_{S,R}$ and $\Pr(S,R)$

Our result

We have obtained the following results as consequences of Theorem 6.

Corollary 1

Let S be a non-commutative subring of a ring R and p the smallest prime dividing |R|. Then

$$|E(\Gamma_{S,R})| \le |S|(|R| - \frac{3|S|}{16} - p) - |Z(R) \cap S|(|R| - p)$$

イロト イヨト イヨト イヨト

3

Relation between $\Gamma_{S,R}$ and Pr(S,R)

Our result

Corollary 2

Let S be a non-commutative subring of a ring R. Then

$$|E(\Gamma_{S,R})| \ge -\frac{3|S|^2}{16} + \frac{3|S||R|}{8}$$

Relation between $\Gamma_{S,R}$ and \mathbb{Z} -isoclinism

Definition

Buckley et al. [1] introduced the concept of \mathbb{Z} -isoclinism between two rings. Motivated by them, we introduce the concept of \mathbb{Z} -isoclinism between two pairs of rings.

Definition

Let S_1 and S_2 be two subrings of R_1 and R_2 respectively. A pair of rings (S_1, R_1) is said to be \mathbb{Z} -isoclinic to a pair of rings (S_2, R_2) if there exist additive group isomorphisms $\phi : \frac{R_1}{Z(R_1) \cap S_1} \to \frac{R_2}{Z(R_2) \cap S_2}$ such that $\phi \left(\frac{S_1}{Z(R_1) \cap S_1} \right) = \frac{S_2}{Z(R_2) \cap S_2}$; and $\psi : [S_1, R_1] \to [S_2, R_2]$ such that $\psi([u, v]) = [u', v']$ whenever $\phi(u + (Z(R_1) \cap S_1)) =$ $u' + (Z(R_2) \cap S_2), \phi(v + (Z(R_1) \cap S_1)) = v' + (Z(R_2) \cap S_2).$

Relation between $\Gamma_{S,R}$ and \mathbb{Z} -isoclinism

Our result

We have obtained the following relation between \mathbb{Z} -isoclinism and $\Gamma(S, R)$.

Theorem 7

Let S_1 and S_2 be two subrings of the finite rings R_1 and R_2 respectively. Let the pairs (S_1, R_1) and (S_2, R_2) are \mathbb{Z} -isoclinic. Then $\Gamma_{S_1,R_1} \cong \Gamma_{S_2,R_2}$ if $|Z(R_1) \cap S_1| = |Z(R_2) \cap S_2|$ and $|Z(R_1)| = |Z(R_2)|$.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Relation between $\Gamma_{S,R}$ and \mathbb{Z} -isoclinism

Our result

We conclude with the following corollary.

Corollary 3

Let *R* be a ring with subrings *S* and *T* such that (S, R) is \mathbb{Z} -isoclinic to (T, R). Then $\Gamma_S \cong \Gamma_T$ if $|Z(R) \cap S| = |Z(R) \cap T|$.

(4回) (三) (三) (三)

-Reference

- Buckley, S. M., Machale, D., and Ní Shé, A. Finite rings with many commuting pairs of elements, Preprint.
- Dutta, J., Basnet, D. K., and Nath, R. K. On commuting probability of finite rings. *Indag. Math. (N.S.)*, 28(2):372–382, 2017.
- Erfanian, A., Khashyarmanesh, K., and Nafar, Kh.
 Non-commuting graphs of rings. *Discrete Math. Algorithms Appl.*, 7(3): 1550027-1–1550027-7, 2015.
- MacHale, D. Commutativity in finite rings. Amer. Math. Monthly, 83: 30–32, 1976.

・ 同下 ・ ヨト ・ ヨト

Reference

Tolue, B. and Erfanian, A. Relative non-commuting graph of a finite group. J. Algebra Appl., 12(2):1250157-1–1250157-11, 2013.

- (回) (三) (三) (三) (三)

DQC

Reference

THANK YOU

(1日) (1日) (日)

э.

DQC