Degenerations of Cohen-Macaulay modules via matrix representations

Naoya Hiramatsu

National Institute of Technology, Kure College

October 8, 2017

Throughout the talk, (R, \mathfrak{m}) is a commutative noetherian complete local k-algebra with a residue field $k = \overline{k}$.

• Since *R* is complete, by Cohen's structure theorem for a complete local rings,

 $\exists S \subset R$: a regular local ring s.t. *R* is a module-finite *S*-algebra.

• We say that *R* is Cohen-Macaulay (abbr. CM) if *R* is free as an *S*-module. We also say that a finitely generated *R*-module *M* is a CM module if *M* is free as an *S*-module.

 $CM(R) = \{M \mid \exists n \in \mathbb{N}, M \cong S^n \text{ as an}S\text{-module.}\}\$

In the rest of the talk, we assume that R is CM.

• Let $M \in CM(R)$. Since $M \cong S^n$ for some n,

 $\exists \mu : R \to \operatorname{End}_{S}(M) \cong M_{n}(S)$; a *k*-algebra homomorphism.

• μ is called a **matrix-representation** of *M* over *S*.

Example

Let $R = k[[x, y]]/(x^2)$. Then $S = k[[y]] \subset R \cong S \oplus xS$. It is known that R is of countable representation type and isomorphic classes of indecomposable CM modules are the following;

R, R/(x), (x, y^n) $n \ge 1$.

Then the matrix representations of these modules are

$$egin{pmatrix} 0&1\0&0\end{pmatrix},\quad (0),\quad egin{pmatrix} 0&y^n\0&0\end{pmatrix}\quad n\geq 1. \end{cases}$$

Definition (degeneration (Yoshino, 2004))

Let V = k[[t]]. For $M, N \in CM(R)$. We say that M degenerates to N if there exists a finitely generated $R \otimes_k V$ -module Q such that

- (1) Q is V-flat.
- (2) $Q/tQ \cong N$ as an *R*-module.
- (3) $Q_t \cong M \otimes_k V_t$ as an $R \otimes_k V_t$ -module.

Remark

• [Zwara, 2000], [Yoshino, 2004] M degenerates to N if and only if

$$\exists \ 0 \to Z \xrightarrow{\begin{pmatrix} \varphi \\ \psi \end{pmatrix}} M \oplus Z \to N \to 0 \text{ s.t. } \psi^n = 0 \text{ for } n \gg 1.$$

• If $\exists 0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$, then *M* degenerates to $L \oplus N$.

History

The degeneration problem of modules has been studied by many authors.

- [Bongartz, 1996] If R is a representation directed k-algebra, M ≤_{hom} N ⇔ M ≤_{deg} N.
- [Zwara, 1999] If R is of finite representation type, $M \leq_{deg} N \Leftrightarrow M \leq_{ext} N.$
- [-, Yoshino, 2013] If R is an even-dimensional hypersurface of finite representation type (A_n) , $M \leq_{deg} N \Leftrightarrow M \leq_{ext} N$ on CM(R).

Today

R is a hypersurface of countable representation type (A_{∞}) , that is $R = k[[x, y]]/(x^2), \ k[[x, y, z]]/(x^2 + y^2).$

Proposition

Let $M, N \in CM(R)$. Suppose that M degenerates to N. Let Q be a finitely generated $R \otimes_k V$ -module which gives the degeneration. Then Q is <u>free</u> as an $S \otimes_k V$ -module.

 By the proposition, we can consider the matrix representation of Q over S ⊗_k V;

$$\exists \ \xi : R \otimes_k V \to M_n(S \otimes_k V) \quad \text{for some } n \in \mathbb{N}.$$

Corollary

Let $M, N \in CM(R)$. Then M degenerates to N if and only if there exists the matrix representation ξ over $S \otimes_k V$ such that

$$\xi \otimes_V V/t \cong \nu$$
 and $\xi \otimes_V V_t \cong \mu \otimes V_t$,

where ν and μ are the matrix representation of N and M respectively.

• For matrices μ and ν , we denote by $\mu \cong \nu$ if $\exists P$: invertible matrix s.t. $P^{-1}\mu P = \nu$.

Corollary (Necessary condition for degenerations)

Let $M, N \in CM(R)$. Suppose that M degenerates to N. Let Q be a finitely generated $R \otimes_k V$ -module which gives the degeneration. We denote by μ (resp. ξ) the matrix representation of M (resp. Q). Then we have the following equalities in $S \otimes_k V$:

(1)
$$\operatorname{tr}(\xi) = \operatorname{tr}(\mu)$$
,
(2) $\operatorname{det}(\xi) = \operatorname{det}(\mu)$,
(3) $\forall j > 0, \exists l \ge 0 \text{ s.t. } l_j(\xi) = t^l l_j(\mu)$

- Here, for a matrix μ ,
 - $tr(\mu)$: a trace of μ .
 - det(μ): a determinant of μ .
 - $I_j(\mu)$: an ideal generated by *j*-minors of μ .

Theorem (dim
$$R = 1$$
)
Let $R = k[[x, y]]/(x^2)$. Then $\begin{pmatrix} 0 & y^a \\ 0 & 0 \end{pmatrix}$ degenerates to $\begin{pmatrix} 0 & y^b \\ 0 & 0 \end{pmatrix}$ if and only if $a \le b$ and $a \equiv b \mod 2$.

Proof.

1 11

-

(⇐) We consider
$$\begin{pmatrix} ty^{\frac{a+b}{2}} & y^b \\ -t^2y^a & -ty^{\frac{a+b}{2}} \end{pmatrix}$$
 as $\xi \in M_2(S \otimes_k V)$.
(⇒) Check the condition on *a* and *b* to satisfy the corollary.

Theorem (dim R = 2)

Let
$$R = k[[x, y, z]]/(x^2 - yx)$$
. Then $\begin{pmatrix} 0 & z^a \\ 0 & y \end{pmatrix}$ (resp. $\begin{pmatrix} y & z^a \\ 0 & 0 \end{pmatrix}$) never
degenerates to $\begin{pmatrix} 0 & z^b \\ 0 & y \end{pmatrix}$ (resp. $\begin{pmatrix} y & z^b \\ 0 & 0 \end{pmatrix}$) for all $a < b$.

Remark

Let R be $k[[x, y, z]]/(x^2 - xy)$. It is also known that R is of countable representation type. The isomorphic classes of indecomposable CM modules are

$$R, (x), (x-y), (x,z^n), (x-y,z^n), n \ge 1.$$

Then the matrix representations of these modules are

$$egin{pmatrix} y & 1 \ 0 & 0 \end{pmatrix}, \quad (y), \quad (0), \quad egin{pmatrix} y & z^n \ 0 & 0 \end{pmatrix}, \quad egin{pmatrix} 0 & z^n \ 0 & y \end{pmatrix}, \quad n \geq 1$$

Thank you for your attention.