Symmetric Hochschild extension algebras and normalized 2-cocycles

Tomohiro Itagaki

Tokyo University of Science

8th October 2017

The 50th Symposium on Ring Theory and Representation Theory at Yamanashi University

- K: an algebraically closed field
- Algebras mean bound quiver algebras over \boldsymbol{K}
- $D = \operatorname{Hom}_{K}(-, K)$: standard duality

Definition

An extension of K-algebra A is a K-algebra epimorphism $\rho: T \to A$. An extension $\rho: T \to A$ of A is called Hochschild extension by a duality bimodule DA if Ker $\rho \cong DA$ as T-bimodule. Then, T is called a Hochschild extension algebra of A by DA.

 $T \cong A \oplus DA$ as *K*-vector space Suppose that for $(a, f), (b, g) \in T \cong A \oplus DA$

$$(a,f)(b,g) = (ab,ag + fb + \alpha(a,b))$$

where $\alpha : A \times A \rightarrow DA$. Then α is a 2-cocycle.

Definition

A map $\alpha : A \times A \to DA$ is called a 2-cocycle if α is a bilinear map and α satisfies the following:

$$alpha(b,c) - lpha(ab,c) + lpha(a,bc) - lpha(a,b)c = 0$$

for any $a, b, c \in A$.

We denote the Hochschild extension algebra T of A by DA for 2-cocycle α by

$$T_{\alpha}(A, DA)$$

- $T_0(A, DA)$ is the trivial extension algebra of A by DA
- $\{(e, \sum_{e' \in Q_0} -\alpha(e, e')e') \mid e \in Q_0\}$ is a complete set of primitive orthogonal idempotents of $T_{\alpha}(A, DA)$
- $H^2(A, DA) \xleftarrow{1:1} \{ \text{Hochschild extensions of } A \text{ by } DA \} / \sim$ For any *K*-linear map $f : A \to DA$, $[\alpha - \delta f] = [\alpha]$, where δf is a 2-cocycle given by

$$(\delta f)(a,b) = af(b) - f(ab) + f(a)b$$

• $T_{\alpha}(A, DA)$ is self-injective.

Example 1. The trivial extension algebra $T_0(A, DA) = A \ltimes DA$ is symmetric. In fact, $T_0(A, DA)$ has a regular symmetric map $\mu_0: T_0(A, DA) \to K$ given by

$$\mu_0(a,f) = f(\mathbf{1}_{\mathbf{A}})$$

Example 2. Let $A = K[x, y]/(x^2, y^2)$, $B = \{1, x, y, xy\}$ a basis of A, $\overline{B^*} = \{1^*, x^*, y^*, (xy)^*\}$ the dual basis of B and $\alpha : A \times A \rightarrow DA$ a 2-cocycle given by

$$lpha(x,y) = 1^*$$
 $lpha(a,b) = 0$

for $(a,b) \in (B \times B) \setminus \{(x,y)\}$. Then $T_{\alpha}(A, DA)$ is not symmetric.

Question

When Hochschild extension algebras are symmetric?

Theorem [Ohnuki-Takeda-Yamagata (1999)]

Let A = KQ/I and $\alpha : A \times A \rightarrow DA$ a 2-cocycle. If α satisfies

 $\alpha(p,q)(t(q)) = \alpha(q,p)(t(p))$

for any two paths p, q of length 1 or more which pq is a cycle (s(p) = t(q) and t(p) = s(q)), then $T_{\alpha}(A, DA)$ is symmetric.

Example 3. Let $A = K[x, y, z]/(x, y, z)^2$ and $B = \{1, x, y, z\}$ a basis of $\overline{A}, B^* = \{1^*, x^*, y^*, z^*\}$ the dual basis of B and $\alpha : A \times A \rightarrow DA$ a 2-cocycle given by

$$lpha(x,y) = 1^* - z^* \ lpha(y,z) = 1^* - x^* \ lpha(y,z) = 1^* - x^* \ lpha(z,x) = 1^* - y^* \ lpha(a,b) = 0$$

for $(a,b) \in (B \times B) \setminus \{(x,y), (y,z), (z,x)\}$. Then, $\alpha(x,y)(1) \neq \alpha(y,x)(1)$, however $T_{\alpha}(A, DA)$ is symmetric. In fact, $T_{\alpha}(A, DA)$ has a symmetric regular K-linear map $\lambda : T_{\alpha}(A, DA) \to K$ given by

$$\lambda(a,f) = f(1+x+y+z)$$

for $(a, f) \in T_{\alpha}(A, DA)$.

Theorem [I]

Let A = KQ/I and B a basis of A which for each $b \in B$ b is represented by a path, $\alpha : A \times A \to DA$ a 2-cocycle, $\eta_{\alpha} : A \times A \to DA$ a bilinear map given by $\eta_{\alpha}(a,b) = \alpha(a,b) - \alpha(b,a)$, and $V_{\alpha} = \{a \in Z(A) \mid f(a) = 0 \text{ for any } f \in \eta_{\alpha}(A \times A)\}.$ If there exists $x \in V_{\alpha}$ such that $e^*(x) \neq 0$ for any vertices $e \in B$,

then $T_{\alpha}(A, DA)$ is symmetric.

<u>Proof.</u> It is sufficient to check that a K-linear map $\lambda: T_{\alpha}(A, DA) \to K$ given by

$$\lambda(a,f)=f(x)$$

is regular and symmetric.

Example 4.

- In Example 1, $1 \in V_0$
- In Example 3, $V_lpha=\langle 1+x+y+z
 angle.$

Definition

Let A be a K-algebra, E a complete set of primitive orthogonal idempotents of A and $\alpha : A \times A \rightarrow DA$ a 2-cocycle. Then

- lpha is normalized if lpha(1,a)=lpha(a,1)=0 for any $a\in A$
- α is *E*-normalized if $\alpha(e,a) = \alpha(a,e) = 0$ for any $a \in A$ and $e \in E$

• $h_R(lpha): A o DA$: a K-linear map given by

$$(h_R(lpha))(a) = \sum_{e \in E} lpha(a,e) e$$

• $h_L(lpha): A o DA$: a K-linear map given by

$$(h_L(lpha))(a) = \sum_{e \in E} e lpha(e,a)$$

• $H_R(\alpha) = \alpha - \delta h_R(\alpha)$ • $H_L(\alpha) = \alpha - \delta h_L(\alpha)$

Then $H_L(H_R(\alpha)) = H_R(H_L(\alpha))$. We denote it by $\overline{\alpha}$.

Proposition

The following holds:

- (1) $[\alpha] = [\overline{\alpha}]$ (in particular, $T_{\alpha}(A, DA) \cong T_{\overline{\alpha}}(A, DA)$)
- (2) $\overline{\alpha}$ is *E*-normalized
- (3) Suppose that $E = Q_0$, then $\overline{\alpha}$ is given by

$$\overline{\alpha}(p,q) = \begin{cases} s(p)\alpha(p,q)t(q) - p\alpha(t(p),s(q))q & \text{if } pq \neq 0 \text{ in } KQ, \\ 0 & \text{otherwise} \end{cases}$$

for paths p, q in A.

<u>Remark.</u> Suppose that α satisfies

$$\alpha(p,q)(t(q)) = \alpha(q,p)(t(p))$$

for any two paths p, q of length 1 or more which pq is a cycle (s(p) = t(q)and t(p) = s(q)). Let $\beta = \alpha - \delta h_{\alpha}$, where a K-linear map $h_{\alpha} : A \to DA$ is given by

$$h_{lpha}(p) = \left\{ egin{array}{ll} 0 & ext{if } p ext{ is a cycle in } Q \\ & ext{ and the length of } p ext{ is 1 or more} \\ & (h_R(lpha))(p) & ext{otherwise} \end{array}
ight.$$

 $\begin{array}{l} \text{for a path p in A.}\\ \text{Then, $1\in V_{\overline{\beta}}=\{a\in Z(A)\mid f(a)=0$ for $f\in\eta_{\overline{\beta}}(A\times A)$}\}. \end{array}$

Thank you for your attention!