On Nakayama Conjecture and related conjectures-Review The 50th Japan Ring and Representation Theory Symposium

Masahisa Sato

University of Yamanashi JAPAN

October 7-10, 2017

環論シンポジューム 50 周年

50th Anniversary of Japan Ring Theory Symposium 温故知新

Review the old knowledge and learn new idea.

環論シンポジュームの曙 (Pioneer of Ring Symposium)

第6回代数学シンポジューム (1964年7月10日-14日) 北海道大学理学部(世話人:東屋五郎) 講演題目

- ◎ 森田氏の定理をめぐって (p.1-7) (東屋五郎:北大)
- ② Separable algebra の Galois の理論 (神崎熙夫:大阪学芸大)
- ③ QF-3 algebra の dominant dimension (太刀川弘幸:京都工芸繊維大)
- ④ 射影的加群 (Ⅰ 遠藤静夫:慶応大、Ⅱ 日野原幸利:熊本大)
- ⑤ フロベニュース拡大 (Ⅰ都築俊郎:名古屋大、Ⅱ小野寺毅:北大)
- 💿 可環環上の半単純多元環 (服部昭:東京教育大)
- Maximal order のホモロジー的考察 (原田学:大阪市大)
- Profinite group のコホモロジー論と整数論への応用 (I河田敬義:東大、II 佐々木良雄:愛媛大)
- Grothendieck cohomology の紹介 (山田浩:東京教育大)
- ❶ Chen classes と projective class group (尾関英樹:名古屋大)
- Derive category の理論の紹介 (pp.68-85) (松村英之:京大)

- 1. Nakayama Conjecture
- 2. Tachikawa Conjecture +
- 3. Generalized Nakayama Conjecture
- 4. Strong Nakayama Conjecture
- 5. Finitistic Dimension Conjecture
- 6. Tilting version of Generalized Nakayama Conjecture
- 7. Related Results

Nakayama Conjecture

Let A be a finite dimensional algebra over a field K and $D(M) = \text{Hom}_k(M, K)$ a dual space of a vector space M.

Tadashi Nakayama gave the following conjecture in 1958.

Conjecture (NC:Nakayama Conjecture) Assume _AA has a minimal injective resolution

 $0 \to A \to E_1 \to E_2 \to \cdots \to E_n \to \cdots$

with all E_i's are projective, then A is self-injective.

Reference: Tadashi Nakayama On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958), 300-307.

Tachikawa Conjecture

Hiroyuki Tachikawa gave the following conjecture which is equivalent to NC.

Conjecture (TC: Tachikawa Conjecture)

[T1] $\operatorname{Ext}_{A}^{i}({}_{A}D(A), {}_{A}A) = 0$ for all i > 0, then A is self-injective.

[T2] Assume A is a self-injective algebra and M is a finitely generated left A module. If $\operatorname{Ext}_{A}^{i}(M, M) = 0$ for all i > 0, then M is projective.

Reference: Hiroyuki Tachikawa Quasi-Frobenius Rings and Generalizayuions, QF-3 and QF-1 Rings Lecture Notes in Mathematics, Springer-Verlag, Inc., Berlin and New York, 1973

Tachikawa Conjecture

Remark 1.1

[T2] and hence [NC] are not true for an artinian ring in general. We see this in Chapter 7(7)

[NC] is a typical conjecture for algebras.

What is the difference between algebras and artinian rings ?

New Nakayama Conjecture

In general, an artinian ring has not self-duality, so we give the following new conjecture.

Conjecture (NNC: New Nakayama Conjecture)

Assume an artinian ring A has a self-duality and $_AA$ has a minimal injective resolution

$$0 \to A \to E_1 \to E_2 \to \cdots \to E_n \to \cdots$$

with all E_i 's are projective, then A is self-injective.

Artinian ring with self-duality

Typical example of an artinian ring with self-duality is an artin algebra, which is an artinian ring finitely generated over its center.

An artin algebra was orginally defined by Emil Artin.

Reference: Maurice Auslander, Idun Reiten, Sverre O. Smalo, (1997)[1995], Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, ISBN 978 - 0 - 521 - 59923 - 8, MR 1314422, Zbl 0834.16001

Ring with self-duality

Yoshitomo Baba's comment for Rings with self-duality Reference:新しいアルティン環の流れ, 数学 67(3) 2015 年, 271-290 ページ

The following rings are typical rings with self-duality.

- (1) commuative ring
- (2) Serial ring (Amdal, Ringdal, 1968)

Reference: Catégories uniséraleles, C.R. Acad. Sci. Paris Sér. AcdotB, 267 (1968),A85-A87, A247-249.

- (3) Harada(H) ring with homogenious socle
 - i.e. $\operatorname{soc} R$ is a finite direct sum of a simple module.
- (4) Homogenius type Harada ring (Kado and Oshiro, 1999) Reference: Self-Duality and Harada Rings, J.Alg. 211,1999,384-408.

A ring *R* is called left H-ring if for any indecomposable projective right module P_R , there is some indecomposable projective injective right module *I* such that $P = I \operatorname{rad}^n R$ for some n > 0.

Quasi-Harada ring

(5) Some Quasi-Harada(QH) rings

A ring R is called QH-ring if any projective left (right) module is quasi-injective.

Example of a ring of the theorem

Let D be a division ring and set $R = D \times D \times D$ with the multiplication;

 $(x_1, x_2, x_3)(y_1, y_2, y_3) = (x_1y_1, x_1y_2 + x_2y_1, x_1y_3 + x_2y_2 + x_3y_1).$

Then R is non-commutative local serial ring with loewy length 3 and (0, 1, 0) is in (center of eRe) \cap $(e(radA)e - (e(radA)e)^2)$.

Theorem 1.2

QH ring is QF-3 ring. (i.e.) There is an idempotent $e \in R$ such that eR is minimal faithful module. If eRe is local serial and (center of eRe) \cap (eradAe - (eradAe)²) is not empty, then R has self-duality

To show the equivalence of [NC] and [TC], it requires the following facts and notations.

Lemma 1.3

It holds for finite dimensional algebras over a field K

 $\operatorname{Ext}_{\mathcal{A}}^{i}({}_{\mathcal{A}}D(\mathcal{A}), {}_{\mathcal{A}}\mathcal{A}) \cong \operatorname{Ext}_{\mathcal{A}^{e}}^{i}(\mathcal{A}, \mathcal{A}^{e}).$

Here, $A^e = A \otimes_K A^{op}$ is an enveloping algebra of A.

Proof.
$$\operatorname{Ext}_{A}^{i}(D(A_{A}), {}_{A}A) = \operatorname{Ext}_{A \otimes_{K}K}^{i}({}_{A}A \otimes_{A} D(A_{A})_{K}, {}_{A}A_{K})$$
$$\cong \operatorname{Ext}_{A^{e}}^{i}({}_{A}A, \operatorname{Hom}_{K}(D(A_{A})_{K}, {}_{A}A_{K})).$$

Also,

$${}_{\mathcal{A}} \operatorname{Hom}_{\mathcal{K}} (D(A_{A})_{\mathcal{K}}, {}_{\mathcal{A}}A_{\mathcal{K}})_{\mathcal{A}} = {}_{\mathcal{A}} \operatorname{Hom}_{\mathcal{K}} (D(A_{A})_{\mathcal{K}}, D({}_{\mathcal{K}}D({}_{\mathcal{A}}A_{\mathcal{K}})))_{\mathcal{A}}$$

$$\cong {}_{\mathcal{A}} \operatorname{Hom}_{\mathcal{K}} (D(A_{A}) \otimes_{\mathcal{K}} D({}_{\mathcal{A}}A_{\mathcal{K}}), {}_{\mathcal{K}}\mathcal{K})_{\mathcal{A}}$$

$$\cong D(D({}_{\mathcal{A}}A \otimes_{\mathcal{K}} A_{\mathcal{A}}))$$

$$\cong {}_{\mathcal{A}}A \otimes_{\mathcal{K}} A_{\mathcal{A}}.$$

Definition 1

(left dominant dimension)
 We denote *l.dom.dimA* ≥ n when A has a minimal injective resolution

$$0 \to A \to E_1 \to E_2 \to \cdots \to E_n \to \cdots$$

with projective modules E_1, \ldots, E_n .

(left QF-3 ring)

A is called left QF-3 if it satisfies the one of the following equivalent conditions;

- $E(A) \subset \prod A$. Here, E(A) is an injective envelop of $_AA$.
- A has a minimul faithful module _AM. (i.e.) _AM is faithful and for any faithful module _AN, it holds N⊕ > M.
- **③** There is an idempotent $f = f^2 \in A$ such that Af is faithful injective.

A is called QF-3 if A is left and right QF-3.

Lemma 1.4 (LNM351, p.p.97)

Let A be a QF-3 ring with minimal faithful modules Ae and fA. Assume ℓ .dom.dim $A \ge 2$ and the first n images of the minimal injective resolution of _{fAf} fA are finitely cogenerated by _{fAf} fAe, then the the following conditions are equivalent.

- 2 $\operatorname{Ext}_{fAf}^{i}(fA, fA) = 0$ for i = 1, 2, ..., n.
- Ext^{*i*}_{*eAe*}(*Ae*, *Ae*) = 0 for *i* = 1, 2, ..., *n*.

Theorem 1.5

 $[NC] \iff [TC]$

Proof.

Assume [NC]. We first prove [T1]. We set $R = \operatorname{End}_A(A \oplus D(A))$ and f and e projections to A and D(A), respectively. Then it holds

 $fRf = A, fR = fRf \oplus fRe = A \oplus D(A)$ as left *A*-module. Since

$$\begin{split} \mathrm{Ext}^{i}_{f\!Rf}(f\!R,f\!R) &= \mathrm{Ext}^{i}_{A}(A \oplus D(A), A \oplus D(A)) \\ &= \mathrm{Ext}^{i}_{A}(D(A),A), \end{split}$$

we have $\operatorname{Ext}_{fRf}^{i}(fR, fR) = 0$ from [T1]. From Lemma 1.4, we know $\ell.\operatorname{dom.dim} R = \infty$. So *R* is self-injective by [NC]. Thus *A* is also self-injective.(See Lemma 1.6 below .)

Proof.

(Continuous) Next we prove [T2]. Assume A is self-injective and M is finitely generated. We set $R = \operatorname{End}_A(A \oplus M)$ and f and e projections to A and M, respectively. By the same argument in the proof of [T1], it holds $\operatorname{Ext}^i_{fRf}(fR, fR) = \operatorname{Ext}^i_A(M, M) = 0$ and R is self-injective.

On the other hand, since $A \oplus M$ is finitely generated generator (co-generator), it is well known that this satisfies double centralizer property. i.e. $\operatorname{End}_R(A \oplus M) = A$. Hence $A \oplus M$ is a projectice A-module. (See Lemma 1.6.) Thus M is a projective

Lemma 1.6

(1) Assume $_AM$ is finitely generated and $\operatorname{Ext}^1_A(M, M) = 0$. If $R = \operatorname{End}_A(M)$ is right self-injective, then M is a projective $\operatorname{End}_R(M_R)$ -module.

(2) Assume $R = \text{End}_A(A \oplus D(A))$ is self-injective, then $\text{Ext}_A^1(D(A), A) = 0$ iff A is self-injective.

Proof.

(1) We take a short exact sequence of left A-modules;

$$0 \rightarrow N \rightarrow \oplus A \rightarrow M \rightarrow 0.$$

We apply $\operatorname{Hom}_{\mathcal{A}}(-, M)$ to the above exact sequence, we have the split short exact sequence of right *R*-modules

 $0 \leftarrow \operatorname{Hom}_{\mathcal{A}}(N,M) \leftarrow \operatorname{Hom}_{\mathcal{A}}(\oplus \mathcal{A},M) \leftarrow \operatorname{Hom}_{\mathcal{A}}(M,M) = R \leftarrow 0$

from the assumptions $\operatorname{Ext}^1_A(M, M) = 0$ and R is right self-injective. We apply $\operatorname{Hom}_R(-, M_R)$ to the above exact sequence, we have the split exact sequence;

 $0 \to \operatorname{Hom}_R(\operatorname{Hom}_A(M, N), M) \to \oplus \operatorname{End}_R(M) \to \operatorname{Hom}_R(R, M) = M \to 0.$ Thus M is a projective $\operatorname{End}_R(M)$ -module.

(2) If part is clear, so we prove only if part. We remark $A = \operatorname{End}_R(M)$ since ${}_AM$ is generator. We apply (1) to $M = A \oplus D(A)$, then ${}_AD(A)$ is projective, that is, A_A is injective. So A is self-injective.

Lemma 1.7

Let $_AM$ be an A-module, $B = \operatorname{End}_AM$ and

 $d: A \to \operatorname{End}_B M_B$

a canonical map defined by d(a)(m) = am for $a \in A$, and $m \in M$.

- (1) d is monomorphism iff _AM is faithful.
- (2) If _AM is generator, then d is an isomorphism and M_B is finitely generated projective.
- (3) If $_AM$ is finitely generated projective, then M_B is finitely generated generator.

Proof.

(1) is clear.

(2) Since generator is faithful, so d is monomorphism.

So we show d is an epimorphism.

Take an epimorphism $\sum_{i=0}^{n} \oplus M \xrightarrow{(f_{1}, f_{2}, \cdots, f_{n})} A$, then there are some $m_{i} \in M$ $(j = 1, \cdots, n)$ such that

$$1_A = f_1(m_1) + f_2(m_2) + \cdots + f_n(m_n).$$

Also for $m \in M$, we define $\phi_m : {}_{A}A \to {}_{A}M$ by $\phi_m(a) = am$ for any $a \in A$. We remark $f_j\phi_m \in B$. For any $\varphi \in \operatorname{End}_B(M_B)$,

$$\varphi(m_j \cdot f_j \phi_{m_i}) = \varphi(m_j) \cdot f_j \phi_{m_i} = f_j(\varphi(m_j)) m_i \in Am_i.$$

Since

$$\sum_{j=1}^{n} f_j(m_j)m_i = (\sum_{j=1}^{n} f_j(m_j))m_i = m_i,$$

we have

$$\varphi(m_i) = (\sum_{j=1}^n f_j(\varphi(m_j)))m_i \in Am_i.$$

Proof.

We set $\varphi(m_i) = a_i m_i$ and $a = a_1 f_1(m_1) + a_2 f_2(m_2) + \cdots + a_n f_n(m_n)$, then for any $m \in M$,

$$m = 1 \cdot m = f_1(m_1)m + f_2(m_2)m + \dots + f_n(m_n)m$$
$$= m_1(f_1\varphi_m) + \dots + m_n(f_n\varphi_m)$$

So

$$\varphi(m) = \varphi(m_1)f_1\varphi_m + \dots + \varphi(m_n)f_n\varphi_m$$
$$= (a_1f(m_1) + \dots + a_nf(m_n))m$$
$$= am$$

We apply $\operatorname{Hom}_A(-, {}_AM_B)$ to the above a splittable epimorphism, then we have a splittable epimorphism $\sum_{i=1}^{n} \oplus \operatorname{Hom}_A(M, {}_AM_B)_B = \sum_{i=1}^{n} \oplus B_B \to \operatorname{Hom}_A(A, {}_AM_B)_B = M_B \to 0.$

Thus M_B is finitely generated projective.

Proof.

(3) Assume $_AM$ is finitely generated projective, then we have a splittable epimorphim

$$\sum^{n} \oplus_{\mathcal{A}} \mathcal{A} \xrightarrow{(f_{1}, f_{2}, \cdots, f_{n})} {}_{\mathcal{A}} \mathcal{M} \to 0.$$

That is, there are $f_i(1) = m_i \in M$ and $g_i : {}_{\mathcal{A}}M \to {}_{\mathcal{A}}A \ (i = 1, \cdots, n)$ such that

$$m = m_1g_1(m) + m_2g_2(m) + \cdots + m_ng_n(m)$$

for any *m*. Hence $m = m_1(g_1\varphi_m) + \cdots + m_n(g_n\varphi_m)$. Remarking that $g_i\varphi_i \in B$, m_1, \cdots, m_n are generators of M_B , that is, M_B is finitely generated *B*-module. Apply $\operatorname{Hom}_A(-, {}_AM_B)$ to the above splittable exact sequence, we have a splittable epimorphism

$$\sum^{n} \oplus \operatorname{Hom}_{A}(A, {}_{A}M_{B}) = \sum^{n} \oplus M_{B} \to \operatorname{End}_{A}(M) = B_{B} \to 0.$$

That is, M_B is generator.

Tachikawa Conjecture +

In the proof of $[NC] \iff [TC]$,

the properties of generator and co-generator are essential.

So Tachikawa gave the following conjecture equivalent to [TC] by using the notion of generator and co-generator.

Conjecture (TC+: Tachikawa Conjecture +)

Let $_AM$ be finitely generated generator co-generator. If $\operatorname{Ext}_A^i(M, M) = 0$ for any i > 0, then M is projective.

Theorem 2.1 $[TC] \iff [TC+]$

Tachikawa Conjecture +

Proof.

Assume [TC]. Since M is generator co-generator, we have a splittable epimorphism $\sum \oplus M \to A \to 0$. That is, for some m, n > 0, it holds $_AA < \oplus M^{(n)}$ and $_AD(A) < \oplus M^{(m)}$. Thus $\operatorname{Ext}_A^i(M, M) = 0$ implies $\operatorname{Ext}_A^i(D(A), A) = 0$. [T1] implies A is self-injective. Hence M is projective by [T2].

Tachikawa Conjecture +

Proof.

Assume [TC+], then we have

$$0 = \operatorname{Ext}_{\mathcal{A}}^{i}(D(\mathcal{A}), \mathcal{A}) = \operatorname{Ext}_{\mathcal{A}}^{i}(D(\mathcal{A}) \oplus \mathcal{A}, D(\mathcal{A}) \oplus \mathcal{A})$$

We show [T1]. Since $D(A) \oplus A$ is projective., A = D(D(A)) is injective. We show [T2] $\operatorname{Ext}_{A}^{i}(M, M) = 0$ for i > 0 and A is self-injective implies $\operatorname{Ext}_{A}^{i}(M \oplus A, M \oplus A) = 0$, Also D(A) = A implies D(A) is co-generator, thus $M \oplus D(A)$ is finitely generated generator cogenrator. By [TC+], $_{A}M$ is projective.

Mauris AusInder and Idun Reiten gave the following conjecture in 1975.

Conjecture (GNC: Generalized Nakayama Conjecture) Let $0 \rightarrow A \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots \rightarrow E_n \rightarrow \cdots$ be a minimal injective resolution of $_AA$ and S any simple module, then there is some i such that $S < E_i$

Reference: Maurice Auslander and Idun Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74.

Remark 3.1

[GNC] $\iff \operatorname{Ext}_{\mathcal{A}}^{i}(S, \mathcal{A}) \neq 0$ for some i > 0

Conjecture (GNC+: Generalized Nakayama Conjecture+)

A generator $_AM$ satisfying $\operatorname{Ext}_A^i(M, M) = 0$ for any i > 0 is finitely generated projective.

Theorem 3.2 [GNC] \iff [GNC+] Particularly [GNC] \implies [NC]

Proof.

Assume [GNC].

We set $B = \text{End}_A(M)$. Then M_B is finitely generated projective since $_AM$ is generator .

Let

$$0 \rightarrow {}_AM \rightarrow E_1 \rightarrow E_2 \cdots$$

be a minimal injective resolution of $_AM$. We apply $\operatorname{Hom}_A(M, -)$, then the following sequence

$$0 \to B = {}_{B}\mathrm{Hom}_{A}({}_{A}M_{B}, {}_{A}M) \\ \to {}_{B}\mathrm{Hom}_{A}({}_{A}M_{B}, E_{1}) \to {}_{B}\mathrm{Hom}_{A}({}_{A}M_{B}, E_{2}) \to \cdots$$

is exact since $\operatorname{Ext}_{A}^{i}(M, M) = 0$ for any i > 0. Also ${}_{B}\operatorname{Hom}_{A}({}_{A}M_{B}, {}_{A}E_{i})$ is injective since M_{B} is projective and ${}_{A}E_{i}$ is injective. Thus for some m >> 0, $\sum_{i=1}^{m} \oplus \operatorname{Hom}A({}_{A}M_{B}, {}_{A}E_{i})$ is co-generator by [GNC].

Proof.

On the other hand, $_{A}E_{i} < \oplus \sum^{t_{i}} \oplus D(A)$ since D(A) is an injective co-generator. So $_{B}\operatorname{Hom}_{A}(_{A}M_{B}, E_{i}) < \oplus \sum^{t_{i}} \oplus_{B}\operatorname{Hom}_{A}(_{A}M_{B}, D(A))$. Since $_{B}\operatorname{Hom}_{A}(_{A}M_{B}, D(A)) \cong _{B}\operatorname{Hom}_{A}(A \otimes_{A} M_{B}, A) = D(M_{B})$ and $D(M_{B})$ is co-generator, so M_{B} is generator.

Thus $_AM$ is finitely generated projective. Hence [GNC+] holds.

Proof.

We assume [GNC+]. Let

$$0 \to {}_A A \to E_1 \to E_2 \to \cdots$$

be a minimal injective resolution of ${}_{A}A$ and $\{S_1, S_2, \ldots, S_n\}$ the complete set of non-isomorphic simple modules included in some E_i . We take $f \in A$ such that $f^2 = f$ and

$$_{A}E(S_{1})\oplus _{A}E(S_{2})\oplus \cdots _{A}E(S_{n})= _{A}D(fA).$$

Thus there is some m_i such that $E_i < \bigoplus_A D(fA)^{m_i}$. Remarking that $fA \otimes_A D(fA) = fD(fA) = D(fAf)$ as left as fAf-module, we have natural isomorphisms

$${}_{A}\mathrm{Hom}_{fAf}(fA, fA \otimes_{A} D(fA)) \cong {}_{A}\mathrm{Hom}_{fAf}(fA, D(fAf)) \cong {}_{A}\mathrm{Hom}_{K}(fAf \otimes_{fAf} fA_{A}, K) = {}_{A}D(fA_{A}).$$

Proof.

Hence we have natural isomorphism

$$\varphi_i: {}_{A}\mathrm{Hom}_{fAf}(fA, fA \otimes E_i) \cong {}_{A}E_i.$$

Make an exact commutative diagram form an exact sequence $0 \rightarrow {}_{A}A \rightarrow E_{1} \rightarrow E_{2}$,

$$0 \longrightarrow {}_{A}A \longrightarrow E_{1} \longrightarrow E_{2}$$

$$\downarrow \varphi_{1} \qquad \qquad \downarrow \varphi_{2}$$

$$0 \longrightarrow {}_{A}\operatorname{Hom}_{fAf}(fA, fA \otimes_{A} A) \longrightarrow {}_{A}\operatorname{Hom}_{fAf}(fA, fA \otimes_{A} E1) \longrightarrow {}_{A}\operatorname{Hom}_{fAf}(fA, fA \otimes_{A} E2).$$
Thus ${}_{A}A \cong \operatorname{End}_{fAf}(fA).$

On the other hand, $fA \otimes_A D(fA) = D(fAf)$ is ab injective fAf-module, so is $fA \otimes_A E_i$.

Hence we have an injective resolution of $_{fAf} fA = _{fAf} fA \otimes_A A$

$$0 \to \mathit{fA} \otimes_{\mathcal{A}} \mathit{A} \to \mathit{fA} \otimes_{\mathcal{A}} \mathit{E}_1 \to \mathit{fA} \otimes_{\mathcal{A}} \mathit{E}_2 \to \cdots$$

Proof.

From the above two facts, we have $\operatorname{Ext}_{fAf}^{i}(fA, fA) = 0$. Hence $_{fAf}fA$ is finitely generated projective by [GNC+], so fA is a generator as left $\operatorname{End}_{fAf}(fA)(=A)$ -module, that is, fA_{A} is a finitely generated projective generator. Thus $_{A}D(fA)$ is co-generator, which means $\{S_{1}, S_{2}, \ldots, S_{n}\}$ is the complete set of all non-isomorphic simple modules. Hence [GNC] holds.

Strong Nakayama Conjecture

Robert R. Colby and Kent R. Fuller gave the following conjecture in 1990.

Conjecture (SNC: Strong Nakayama Conjecture)

For any finitely generated module $_AM$, there is some $i \ge 0$ such that $\operatorname{Ext}_A^i(M, A) \neq 0$.

Reference: Robert R. Colby and Kent R. Fuller, A NOTE ON THE NAKAYAMA CONJECTURES, TSUKUBA J. MATH. Vol. 14 No. 2 (1990), 343–352

Remark 4.1 $[SNC] \implies [GNC]$ is clear.

Finitistic Dimension Conjecture

The finitistic dimension of an algebra A is defined by

```
f.gl.dim A = \sup\{p.d(M) < \infty\}
```

Here, p.d(M) is a projective dimension of $_AM$.

Conjecture (FDC: Finitistic Dimension Conjecture)

f.gl.dim $A < \infty$

Theorem 5.1

$[FDC] \implies [SNC]$

Finitistic Dimension Conjecture

Proof.

So

Assume
$$n = \text{f.gl.dim}A < \infty$$
.
Take $_AM$ such that $\text{Ext}_A^i(M, A) = 0$ for all $i \ge 0$.
Let

$$\cdots \xrightarrow{f_1} P_1 \xrightarrow{f_0} P_0 \xrightarrow{f_0} M \to 0$$

be a projective resolution of $_AM$.

Then by assumption, we have an exact sequence

$$\cdots \leftarrow \operatorname{Hom}_{A}(P_{1}, A)_{A} \xleftarrow{\operatorname{Hom}_{A}(f_{1}, A)} \operatorname{Hom}_{A}(P_{0}, A)_{A} \xleftarrow{\operatorname{Hom}_{A}(f_{0}, A)} \operatorname{Hom}_{A}(M, A)_{A} = 0.$$
we have the projective resolution of $\operatorname{ImHom}_{A}(f_{n+2}, A)$
 $0 \leftarrow \operatorname{ImHom}_{A}(f_{n+2}, A) \xleftarrow{\operatorname{Hom}_{A}(f_{n+2}, A)} \operatorname{Hom}_{A}(P_{n+1}, A)_{A} \leftarrow \cdots$
 $\leftarrow \operatorname{Hom}_{A}(P_{1}, A)_{A} \xleftarrow{\operatorname{Hom}_{A}(f_{1}, A)} \operatorname{Hom}_{A}(P_{0}, A)_{A}$
 $\xleftarrow{\operatorname{Hom}_{A}(f_{0}, A)} \operatorname{Hom}_{A}(M, A)_{A} = 0.$

Finitistic Dimension Conjecture

Proof.

Since $p.d \operatorname{ImHom}_{A}(f_{n+2}, A) \leq n$, we have a splittable epimorphism

$$0 \leftarrow \operatorname{Hom}_{\mathcal{A}}(P_1, \mathcal{A})_{\mathcal{A}} \xleftarrow{\operatorname{Hom}_{\mathcal{A}}(f_1, \mathcal{A})} \operatorname{Hom}_{\mathcal{A}}(P_0, \mathcal{A})_{\mathcal{A}}.$$

Thus we have a commutative diagram $\operatorname{Hom}_{A}(\operatorname{Hom}_{A}(P_{1}, A)_{A}, A_{A}) \xrightarrow{g} \operatorname{Hom}_{A}(\operatorname{Hom}_{A}(P_{0}, A)_{A}, A_{A}) \longrightarrow 0$ $\cong \downarrow \qquad \qquad \cong \downarrow$ $P_{1} \xrightarrow{f_{1}} P_{0} \longrightarrow 0.$ Here $g = \operatorname{Hom}_{A}(\operatorname{Hom}_{A}(f_{1}A_{A})).$ Thus f_{1} is splittable epimorphism, which means M = 0.

Takayashi Wakamatsu gave the following conjecture.

Conjecture (TGNC: Tilting version of Generalied Nakayama Conjecture) Assume T_A is a tilting module and let

$$0 \rightarrow A \rightarrow T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n \rightarrow \cdots$$

be a minimal dominant resolution, then for any indecomposable direct summand $T' < \oplus T$, there is some i such that $T' < \oplus T_i$.

A module T_A is called a tilting module if the following two conditions are satisfied; (1) $\operatorname{Ext}_A^i(T, T) = 0$ for any i > 0.

(2) There is some exact sequence

$$\cdots \rightarrow T_2 \rightarrow T_1 \rightarrow D(A)_A \rightarrow 0$$

such that $T_i < \oplus (\sum_{i=1}^{n_i} \oplus T)$ for every *i* and

 $\operatorname{Hom}_{\mathcal{A}}(\mathcal{T},\mathcal{T}_2) \to \operatorname{Hom}_{\mathcal{A}}(\mathcal{T},\mathcal{T}_1) \to \operatorname{Hom}_{\mathcal{A}}(\mathcal{T},\mathcal{D}(\mathcal{A})) \to 0.$

Takayoshi Wakamatsu gave the following conjecture in his lecture which is equivalent to [GNC].

Theorem 6.1 $[GNC] \iff [TGNC]$

Let T_A be a tilting module. An exact sequence

$$0 \rightarrow A_A \rightarrow T_1 \rightarrow T_2 \rightarrow \cdots$$

is called a dominant resolution if the following two conditions are satisfied; (1) $T_i < \oplus (\sum_{i=1}^{n_i} \oplus T_A)$ for every *i*. (2) $0 \leftarrow \operatorname{Hom}_A(A, T) \leftarrow \operatorname{Hom}_A(T_1, T) \leftarrow \operatorname{Hom}_A(T_2, T) \leftarrow \cdots$ is exact.

Remark 6.2 (Wakamatsu)

There is a minimal dominant resolution.

Proof.

Assume [TGNC]. Let (*) $0 \rightarrow {}_{A}A \rightarrow {}_{A}I_{1} \rightarrow {}_{A}I_{2} \rightarrow \cdots$ be a minimal injective resolution of ${}_{A}A$. ${}_{A}D(A_{A})$ is a tilting module with a minimal dominant resolution (*). Indecomposable direct summands of ${}_{A}D(A_{A})$ are injective envelops of all simple modules. That is, any simple module is a submodule of some I_{i} by [TGNC]. Hence [GNC] holds.

Proof.

Next assume [GNC]. We set $B = \operatorname{End}_A(T_A)$. We know that a tilting module has the double centralizer property, we have $A = \operatorname{End}_B({}_BT)$. Let $0 \to A_A \to T_1 \to T_2 \to \cdots$ and $0 \to {}_BB \to T'_1 \to T'_2 \to \cdots$ be minimal dominant resolutions of A_A and ${}_BB$, respectively. We take a direct sum $\Sigma \oplus L$ of non-isomorphic indecomposable direct summands of some T_i . Since $\Sigma \oplus L < \oplus T$, there is $f \in B$ such that $f^2 = f$ and $\Sigma \oplus L = fT$. [TGNC] is equivalent to $f = 1_B$, so we show $f = 1_B$.

Proof.

Also we take a direct sum $\sum \oplus M$ of non-isomorphic indecomposable direct summands of some T'_i .

By the same argument as above, there is $e \in A = \operatorname{End}(T_B)$ such that $e^2 = e$ and $\sum \oplus M = Te$.

We know that

(1) $_{fAf} fTe_{eAe}, _BBf_{fBf}, _{eAe}eA_A$ are tilting modules.

(2) $_BT_A \cong _BBf \otimes_{fBf} fTe \otimes_{eAe} eA.$

(3) $_B T_A$ is a tilting module iff $_A \operatorname{Hom}_{\mathcal{K}}(T, \mathcal{K})_B = D(T)$ is a co-tilting module. Since $_B Bf_{fBf}$ is a tilting module, there is an exact sequence

$$\cdots \to \sum \oplus Bf \to \sum \oplus Bf \to {}_BD(B) \to 0.$$

Hence we have an exact sequence

$$0 \to B \to \sum \oplus fD(B) \to \sum \oplus fD(B) \to \cdots,$$

hence $f = 1_B$ by [GNC].

Related Results

Summary:

For algebras,

 $[\mathsf{FDC}] \Longrightarrow [\mathsf{SNC}] \Longrightarrow [\mathsf{GNC}] \Longleftrightarrow [\mathsf{GNC+}] \Longleftrightarrow [\mathsf{TGNC}]$

 $\implies [\mathsf{NC}] \Longleftrightarrow [\mathsf{TC}+] \Longleftrightarrow [\mathsf{TC}] \Longleftrightarrow [\mathsf{TC1}] \text{ and } [\mathsf{TC2}]$

 $[\mathsf{NNC}]$ for atinian rings \Longrightarrow $[\mathsf{NC}]$ for algebrs

Related Results

GEORGE V. WILSON, The Cartan Map on Categories of Graded Modules JOURNAL OF ALGEBRA 85, 390-398 (1983)

Theorem 7.1

[GNC] is true for positive graded algebras.

Piroyuki Tachikawa, LNM351, 1984

Theorem 7.2

[T2] is true for a group algebra k[G] for a finite p-group G and a field k.

③ RAINER SCHULTZ, Boundedness and Periodicity of Modules over QF Rings, JOURNAL OF ALGEBRA 101, 450-469 (1986)

Theorem 7.3

[T2] is true for a group algebra k[G] for a finite group G and a field k.

Related Results

Edward L. Green, Birge Zimmermann-Huisgen Finitistic dimension of artinian rings with vanishing radical cube, Mathematische Zeitschrift 206, 505-526 (1991)

Theorem 7.4

[FDC] is true for an algebra A with vanishing radical cube (i.e. $rad^3A = 0$).

Peter Dräxler, A proof of the generalized Nakayama conjecture for algebras with J^{2ℓ+1} = 0 and A/J^ℓ representation finite, Journal of Pure and Applied Algebra 78(2), 161-164 (1992)

Theorem 7.5

[GNC] is true for algebras A with $rad^{2\ell+1}A = 0$ and $A/rad^{\ell}A$ representation finite.

Yong Wang, A remarks on the Strong Nakayama Conjecture, 1992

Theorem 7.6

[SNC] is true for artinian rings R with $rad^{2\ell+1}R = 0$ and $A/rad^{\ell}R$ representation finite.

His proof is very smart ! He uses the fact that \mathbb{Z}^{2m} is a noetherian \mathbb{Z} -module.

Proof.

(Wang's proof) Assume there is finitely generated non-zero *R*-module $_RM$ such that $\operatorname{Ext}_R^i(M, R) = 0$ for all $i \ge 0$. For a projective resolution of *M*,

$$\cdots \to P_{n+1} \xrightarrow{f_{n+1}} P_n \to \cdots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$$

we set $\Omega_i = \text{Im}f_i$ and denote $T^* = \text{Hom}_R(_R T, _R R_R)_R$. By assumption, we have an exact sequence

$$0 \leftarrow \Omega_i^* \leftarrow P_{i-1}^* \leftarrow \cdots \leftarrow P_1^* \xleftarrow{f_1^*} P_0^* \leftarrow 0..$$

Thus p.d $\Omega_i^* \leq i - 1$ for any $i \geq 1$. Since $\Omega_i^* \subset JP_i^*$, $J^{2\ell}\Omega_i^* = 0$ for any i.

Proof.

We prove $\operatorname{Ext}^{1}_{R}(\Omega_{2}^{*}, R) \neq 0$ and $\operatorname{Ext}^{1}_{R}(\Omega_{i}^{*}, R) = 0$ for any $i \geq 3$. Since $P \cong P^{**}$ for any projective module P, we have the following commutative diagram

Thus

$$0 \longleftarrow (\Omega_{n+3})^* \longleftarrow (P_{n+2})^* \longleftarrow (P_{n+1})^* \longleftarrow \cdots$$

is a projective resolution and

 $0 \longrightarrow (\Omega_{n+3})^{**} \longrightarrow (P_{n+2})^{**} \longrightarrow (P_{n+1})^{**}$

Proof.

Consider the following commutative diagram ;

Proof.

We fix $m \ge 1$. Take $0 \ne {}_R N$ such that p.d ${}_R N \le m$, and $J^{2\ell} N = 0$. We set $N_1 = J^{\ell} N$, $N_2 = N/J^{\ell} N$.

Since R/J^{ℓ} is representation finite, let $\{C_1, \ldots, C_m\}$ be the complete set of non-isomorphic indecomposable modules and we have the decompositions

$$N_1 = \sum_{j=1}^m \oplus C_j^{a_j}, \ N_2 = \sum_{j=1}^m \oplus C_j^{b_j}.$$

. For i > m, $\operatorname{Ext}_{R}^{i+1}(N_{1}, R)_{R} \cong \operatorname{Ext}_{R}^{i}(N_{2}, R)$ is finitely generated. We set $\ell(k, j) = \operatorname{length} \operatorname{Ext}_{R}^{k}(C_{j}, R)_{R}$, then $\sum_{j=1}^{m} \ell(i+1, j) \cdot a_{j} = \sum_{j=1}^{m} \ell(i, j) \cdot b_{j}$.

Proof.

We denote \mathbb{Z} -module L_i (i > 0) by $\{(c_1, \cdots, c_m, d_1, \cdots, d_m) \in \mathbb{Z}^{2m} \mid \sum_{j=1}^m \ell(i+1, j) \cdot c_j = \sum_{j=1}^m \ell(i, j) \cdot d_j\}$ They are \mathbb{Z} -submodules of the noetherian module \mathbb{Z}^{2m} . So an increasing sequence $L_0 \subset L_1 \subset \cdots$ terminates. That is, $L_{m_0} = L_{m_0+1} = \cdots$ for some m_0 . Take $N = (\Omega_{m_0+3})^*$. Remarking that p.d $(\Omega_{m_0+3})^* < m_0 + 2$, $(a_1, \cdots, a_m, b_1, \cdots, b_m) \in L_{m_0+2}$, thus (*) $(a_1, \cdots, a_m, b_1, \cdots, b_m) \in L_{m_0} = L_{m_0+1}$.

Proof.

From the exact sequence

$$0 \to J^{\ell} N \to N \to N/J^{\ell} N \to 0$$

and the fact

$$\operatorname{Ext}_R^{m_0+1}((\Omega_{m_0+3})^*,R)\cong\operatorname{Ext}_R^1(\Omega_3^*,R)=0,$$

we have an exact sequence

$$\begin{array}{l} 0 \rightarrow \operatorname{Ext}_{R}^{m_{0}+1}(J^{\ell}N,R) \rightarrow \operatorname{Ext}_{R}^{m_{0}+2}(N/J^{\ell}N,R) \rightarrow \\ \operatorname{Ext}_{R}^{m_{0}+2}(N,R) \rightarrow \operatorname{Ext}_{R}^{m_{0}+2}(J^{\ell}N,R) \rightarrow \\ \operatorname{Ext}_{R}^{m_{0}+3}(N/J^{\ell}N,R) \rightarrow \operatorname{Ext}_{R}^{m_{0}+3}(N,R) = 0. \end{array}$$

Proof.

From (*), we have
length
$$\operatorname{Ext}_{R}^{m_{0}+1}(J^{\ell}N, R) = \operatorname{length} \operatorname{Ext}_{R}^{m_{0}+2}(N/J^{\ell}N, R)$$

length $\operatorname{Ext}_{R}^{m_{0}+2}(J^{\ell}N, R) = \operatorname{length} \operatorname{Ext}_{R}^{m_{0}+3}(N/J^{\ell}N, R)$
Thus
$$0 = \operatorname{Ext}_{R}^{m_{0}+2}((\Omega_{m_{0}+3})^{*}, R) = \operatorname{Ext}_{R}^{1}(\Omega_{2}^{*}, R) \neq 0,$$

which is a contradiction.

RAINER SCHULTZ's Result

RAINER SCHULTZ gave the following example from which we know that
 [T2] is not true for artinian rings in general
 by Lemma 1.7.

Thus [NC] is not true for artinian rings in general.

Example 1

There is a self-injective artinian ring R and a finitely generated left R-module $_RM$ such that

(i) $\operatorname{Ext}_{R}^{i}(M, M) = 0$ for any i > 0, (ii) $M_{\operatorname{End}_{R}(M,M)}$ is not finitely generated $\operatorname{End}_{R}(M, M)$ -module.

Robert Martinez-Villa's Result

Robert Martinez-Villa explored conditions in the category of functors of the stable category which are equivalent to [NC].

Theorem 7.7

Assume ℓ .dom.dim $A \leq n$. Then $\text{Dom}_k = \{AM | \ell.\text{dom.dim } M \geq k\}$ is contravariantly finite for any $k \leq n$ in the stable category mod-A of the module category.

We set

$$\begin{split} \tilde{\mathcal{F}}_k &= \{F \in \operatorname{mod}(\underline{\mathrm{mod}}\text{-}A) | F(M) = 0 \text{ for any } M \in \mathrm{Dom}_k \} \\ \tilde{\mathcal{T}}_k &= \{G \in \operatorname{mod}(\underline{\mathrm{mod}}\text{-}A) | G(M) = 0 \text{ for any } M \in \tilde{\mathcal{F}}_k \} \end{split}$$

Then we know $(\tilde{\mathcal{T}}_k, \tilde{\mathcal{F}}_k)$ is a hereditary torsion theory with a torsion radical t_k . We denote $\text{Dom} = \bigcap_{k=0}^{\infty} \text{Dom}_k$ and $\tilde{\mathcal{F}} = \bigcap_{k=0}^{\infty} \tilde{\mathcal{F}}_k$. Let $(\tilde{\mathcal{T}}, \tilde{\mathcal{F}})$ be a corresponding torsion theory with a torsion radical t.

Robert Martinez-Villa's Result

Robert Martinez-Villa gave the following conjecture.

Conjecture (MC: Martinez Conjecture) For any $M \in mod(mod-A)$, it holds that (1) $t(M) = \bigcap_{k=0}^{\infty} t_k(M)$ (2) t(M) is finitely presented

Theorem 7.8 [MC] implies [NC].

Reference: Martinez-Villa, Roberto Algebras of infinite dominant dimension and torsion theories Comm. Algebra 22 (1994), no. 11, 4519–4535.

Cheng Chang Xi's Result

Cheng Chang Xi showed that dominant dimension is not invariant under derived equivalences.

Reference: Cheng Chang Xi Dominant dimensions, derived equivalences and tilting modules ISRAEL JOURNAL OF MATHEMATICS 215(2016), no1, 349-395.

Thank you for your attention !