Classifications of Exact Structures and Cohen-Macaulay-finite Algebras

Haruhisa Enomoto

Graduate School of Mathematics, Nagoya University

October 9, 2017

Outline

Introduction

- Auslander Correspondence for CM-finite IG Algebras?
- Classifications of Exact Structures
 - Exact Categories
 - Categories of Finite Type
 - Main Results

3 Applications

- Classification of CM-finite IG Algebras
- Other Appications

Auslander Correspondence for CM-finite IG Algebras?

Outline

Introduction

- Auslander Correspondence for CM-finite IG Algebras?
- 2 Classifications of Exact Structures
 - Exact Categories
 - Categories of Finite Type
 - Main Results
- 3 Applications
 - Classification of CM-finite IG Algebras
 - Other Appications

Auslander Correspondence for CM-finite IG Algebras?

Categories of Finite Type = Algebras

k: a field.

Proposition

There exists a bijection between:

- Hom-finite k-categories *E* of finite type (:⇔ categories with finitely many indecomposables).
- Finite-dimensional k-algebra Γ (we call Γ an Auslander algebra of ε).

ldea

- **Outline** Categorical properties of \mathcal{E} and
- Provide a strain of the str

should be related!

< 口 > < 四 > < 三 > < 三 >

Auslander Correspondence for CM-finite IG Algebras?

Categories of Finite Type = Algebras

k: a field.

Proposition

There exists a bijection between:

- Hom-finite k-categories *E* of finite type (:⇔ categories with finitely many indecomposables).
- Finite-dimensional k-algebra Γ (we call Γ an Auslander algebra of ε).

Idea

- $\textcircled{0} \quad Categorical properties of \mathcal{E} and $\mathbf{0}$ an$
- e Homological behavior of its Auslander alg F

should be related!

メロシン イヨン イヨン

Auslander correspondence for rep-fin. algebras

Theorem (Auslander 1971)

There exists a bijection between:

- Rep-fin. algebras A.
- 2 Abelian k-categories \mathcal{E} of finite type.
- Algebras Γ satisfying a certain homological condition (gl.dim Γ ≤ 2 ≤ dom.dim Γ).

$$\{ \text{ Rep-fin algebras } \} \xrightarrow{\text{mod}} \{ \text{ Cats of fin-type } \} \xrightarrow{1-1} \{ \text{ Algebras } \}$$

$$\land \longmapsto \mathcal{E} := \text{mod } \land \longmapsto \mathcal{F}$$

Λ' ł

Auslander Correspondence for CM-fin IG Alg?

The same method doesn't work for CM-finite IG alg:

$$\{ CM-fin algebras \} \xrightarrow{CM} \{ Cats of fin-type \} \xleftarrow{1-1} \{ Algebras \}$$

The map "CM" is not injective! i.e. \exists non-Morita-equivalent alg Λ and Λ' s.t. CM $\Lambda \simeq$ CM Λ' .

However A can be recovered from CM A together with the exact structure on it! Haruhisa Enomoto Classifications of Exact Structures and CM-finite Algebras

Auslander Correspondence for CM-fin IG Alg?

The same method doesn't work for CM-finite IG alg:

{ CM-fin algebras }
$$\xrightarrow{\text{CM}}$$
 { Cats of fin-type } $\xleftarrow{1-1}$ {Algebras}

$$\Lambda \longmapsto \mathsf{CM} \Lambda \longmapsto \mathsf{\Gamma}$$

$$\Lambda' \longmapsto$$

The map "CM" is not injective!

i.e. \exists non-Morita-equivalent alg Λ and Λ' s.t. $\mathsf{CM}\,\Lambda\simeq\mathsf{CM}\,\Lambda'.$

Auslander Correspondence for CM-finite IG Algebras?

Auslander correspondence for CM-fin algebras?

$$\left\{ \begin{array}{c} \mathsf{CM-finite} \\ \mathsf{algebras} \end{array} \right\} \xrightarrow{\mathsf{CM}} \left\{ \begin{array}{c} \mathsf{Cats of fin-type} \\ + \mathsf{Exact str. on it} \end{array} \right\} \xrightarrow{?} \left\{ \begin{array}{c} \mathsf{Algebras} \\ + \mathsf{some info} \end{array} \right\} \\ \land \longmapsto \xrightarrow{\mathsf{CM} \land \mathsf{and}}_{\mathsf{natural exact str.}} \longmapsto \mathsf{\Gamma} \end{array}$$

Our Aim

is To Construct Bijection "?" above, i.e. To Classify exact structures on a given additive category using its Auslander algebra.

イロト イポト イヨト イヨト

Exact Categories Categories of Finite Type Main Results

Outline

• Auslander Correspondence for CM-finite IG Algebras?

Classifications of Exact Structures

- Exact Categories
- Categories of Finite Type
- Main Results

3 Applications

- Classification of CM-finite IG Algebras
- Other Appications

Exact Categories Categories of Finite Type Main Results

Exact Category

 $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ in \mathcal{E} is a kernel-cokernel pair if $f = \ker g$ and $g = \operatorname{coker} f$.

Definition (Quillen 1973)

An exact category consists of a pair (\mathcal{E}, F) , where

- E is an additive category, and
- F is a class of ker-coker pairs in \mathcal{E}

satisfying some conditions.

Example

Λ: Iwanaga-Gorenstein alg. (⇔ id $Λ_Λ$ = id $_ΛΛ < ∞$), CM Λ := {X ∈ mod Λ | Ext $_Λ^{>0}(X, Λ) = 0$ } is naturally an exact cat. and $Λ_Λ$ is the progenerator (w.r.t. *F*).

ヘロマ 不可 アイビア イロマ

ъ

Exact Categories Categories of Finite Type Main Results

Exact Category

 $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ in \mathcal{E} is a kernel-cokernel pair if $f = \ker g$ and $g = \operatorname{coker} f$.

Definition (Quillen 1973)

An exact category consists of a pair (\mathcal{E}, F) , where

- E is an additive category, and
- F is a class of ker-coker pairs in \mathcal{E}

satisfying some conditions.

Example

 $\begin{array}{l} \Lambda: \text{ Iwanaga-Gorenstein alg. } (\Leftrightarrow \text{id } \Lambda_{\Lambda} = \text{id }_{\Lambda}\Lambda < \infty),\\ \text{CM } \Lambda:= \{X\in \text{mod }\Lambda | \operatorname{Ext}_{\Lambda}^{>0}(X,\Lambda)=0\} \text{ is naturally an exact cat.}\\ \text{and } \Lambda_{\Lambda} \text{ is the progenerator (w.r.t. }F). \end{array}$

ヘロン 人間 とくほとく ほう

Exact Categories Categories of Finite Type Main Results

Auslander Algebras of Categories of Finite Type

From now on, fix a field k and

- Algebra = finite-dimensional *k*-algebra.
- Category = idempotent-complete Hom-finite *k*-category.
- €: an idem-comp Hom-fin k-category of finite type (:⇔ # ind C is finite).

Definition

An Auslander algebra Γ of \mathcal{E} is defined by $\Gamma := \text{End}_{\mathcal{E}}(G)$, where G is the additive generator of \mathcal{E} ($\mathcal{E} = \text{add } G$).

Exact Categories Categories of Finite Type Main Results

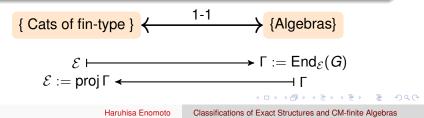
Auslander Algebras of Categories of Finite Type

From now on, fix a field k and

- Algebra = finite-dimensional *k*-algebra.
- Category = idempotent-complete Hom-finite *k*-category.
- €: an idem-comp Hom-fin k-category of finite type (:⇔ # ind C is finite).

Definition

An Auslander algebra Γ of \mathcal{E} is defined by $\Gamma := \text{End}_{\mathcal{E}}(G)$, where G is the additive generator of \mathcal{E} ($\mathcal{E} = \text{add } G$).

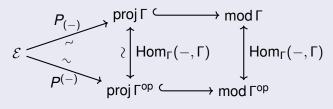


Exact Categories Categories of Finite Type Main Results

Projectivization

 $\Gamma := \operatorname{End}_{\mathcal{E}}(G)$: the Auslander algebra of \mathcal{E} .

Proposition (Auslander's "Projectivization")



We have equivalences:

$$egin{aligned} & \mathcal{P}_{(-)} := \mathcal{E}(G, -) : \mathcal{E} \xrightarrow{\sim} \mathsf{proj}\, \Gamma \ & \mathcal{P}^{(-)} := \mathcal{E}(-, G) : \mathcal{E} \xrightarrow{\sim} \mathsf{proj}\, \Gamma^{\mathsf{op}} \end{aligned}$$

ヘロト ヘワト ヘビト ヘビト

ъ

Exact Categories Categories of Finite Type Main Results

Ker-Coker pair in \mathcal{E} in terms of Γ -module

 \mathcal{E} : cat of fin. type, Γ : its Auslander algebra.

Proposition

Let $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ be a complex in \mathcal{E} , $M := \operatorname{Coker}(P_Y \to P_Z)$ in mod Γ . Then it is a ker-coker pair \Leftrightarrow

1 The following is exact in mod $\Gamma \rightsquigarrow \text{pd } M_{\Gamma} \leq 2$

$$0 \to P_X \xrightarrow{f_\circ} P_Y \xrightarrow{g_\circ} P_Z \to M \to 0.$$

2 The following is exact in mod $\Gamma^{op} \to \operatorname{Ext}^{0,1}_{\Gamma}(M,\Gamma) = 0$.

$$0 \to P^Z \xrightarrow{\circ g} P^Y \xrightarrow{\circ f} P^X \to \mathsf{Ext}^2_\Gamma(M, \Gamma) \to 0$$

Exact Categories Categories of Finite Type Main Results

Ker-Coker pair in \mathcal{E} in terms of Γ -module

 \mathcal{E} : cat of fin. type, Γ : its Auslander algebra.

Proposition

Let $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ be a complex in \mathcal{E} , $M := \operatorname{Coker}(P_Y \to P_Z)$ in mod Γ . Then it is a ker-coker pair \Leftrightarrow

• The following is exact in mod $\Gamma \rightsquigarrow \text{pd } M_{\Gamma} \leq 2$

$$0 \to P_X \xrightarrow{f_\circ} P_Y \xrightarrow{g_\circ} P_Z \to M \to 0.$$

2 The following is exact in mod $\Gamma^{\text{op}} \rightsquigarrow \text{Ext}_{\Gamma}^{0,1}(M,\Gamma) = 0$..

$$0 \to P^Z \xrightarrow{\circ g} P^Y \xrightarrow{\circ f} P^X \to \mathsf{Ext}^2_\Gamma(M, \Gamma) \to 0$$

Exact Categories Categories of Finite Type Main Results

Ker-Cok pairs in $\mathcal{E} \leftrightarrow \text{Objects}$ in $\mathcal{C}_2(\Gamma)$

Definition

The subcat $C_2(\Gamma) \subset \text{mod } \Gamma$ consists of Γ -modules M satisfying

• pd
$$M_{\Gamma} \leq 2$$
.

2 Ext^{0,1}_{$$\Gamma$$}(*M*, Γ) = 0.

$$0 \to X \to Y \to Z \to 0 \longmapsto M := \operatorname{Coker}(P_Y \to P_Z)$$

Ker-cok pairs in \mathcal{E} \longleftrightarrow Obj in $\mathcal{C}_2(\Gamma)$

ヘロン ヘアン ヘビン ヘビン

-

Exact Categories Categories of Finite Type Main Results

Ker-Cok pairs in $\mathcal{E} \leftrightarrow \text{Objects}$ in $\mathcal{C}_2(\Gamma)$

Definition

The subcat $C_2(\Gamma) \subset \text{mod } \Gamma$ consists of Γ -modules M satisfying

• pd
$$M_{\Gamma} \leq 2$$
.

2
$$\operatorname{Ext}_{\Gamma}^{0,1}(M,\Gamma) = 0.$$

$$0 \to X \to Y \to Z \to 0 \longmapsto M := \operatorname{Coker}(P_Y \to P_Z)$$

Ker-cok pairs in \mathcal{E} \longleftrightarrow Obj in $\mathcal{C}_2(\Gamma)$

ヘロン ヘアン ヘビン ヘビン

-

Exact Categories Categories of Finite Type Main Results

Ker-Cok pairs in $\mathcal{E} \leftrightarrow \text{Objects}$ in $\mathcal{C}_2(\Gamma)$

Definition

The subcat $C_2(\Gamma) \subset \text{mod } \Gamma$ consists of Γ -modules M satisfying

• pd
$$M_{\Gamma} \leq 2$$
.

2
$$\operatorname{Ext}_{\Gamma}^{0,1}(M,\Gamma) = 0.$$

$$0 \to X \to Y \to Z \to 0 \longmapsto M := \operatorname{Coker}(P_Y \to P_Z)$$

Ker-cok pairs in \mathcal{E} \longleftrightarrow Obj in $\mathcal{C}_2(\Gamma)$
Classes of ker-cok pairs \Leftarrow Subcat of $\mathcal{C}_2(\Gamma)$

ヘロア ヘビア ヘビア・

Exact Categories Categories of Finite Type Main Results

Ker-Cok pairs in $\mathcal{E} \leftrightarrow \text{Objects}$ in $\mathcal{C}_2(\Gamma)$

Definition

The subcat $C_2(\Gamma) \subset \text{mod } \Gamma$ consists of Γ -modules *M* satisfying

- pd $M_{\Gamma} \leq 2$.
- **2** $\operatorname{Ext}^{0,1}_{\Gamma}(M,\Gamma) = 0.$

$$0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0 \longmapsto M := \operatorname{Coker}(P_Y \rightarrow P_Z)$$
Ker-cok pairs in \mathcal{E} \longrightarrow Obj in $\mathcal{C}_2(\Gamma)$
Classes of ker-cok pairs \longleftarrow Subcat of $\mathcal{C}_2(\Gamma)$
Exact str. on \mathcal{E} \longleftarrow ???

Exact Categories Categories of Finite Type Main Results

Main Result I

 \mathcal{E} : cat. of fin. type, Γ : its Auslander algebra. We have a duality $\text{Ext}^2_{\Gamma}(-,\Gamma) : \mathcal{C}_2(\Gamma) \leftrightarrow \mathcal{C}_2(\Gamma^{\text{op}}).$

Theorem (E)

There exists a bijection between the following two classes.

- Exact structures F on E.
- **2** Subcategories \mathcal{D} of $\mathcal{C}_2(\Gamma)$ satisfying the following.
 - \mathcal{D} is a Serre subcat. of mod Γ .
 - $\operatorname{Ext}^{2}_{\Gamma}(\mathcal{D},\Gamma)$ is a Serre subcat. of mod $\Gamma^{\operatorname{op}}$.

 $\mathcal{D} \subset \text{mod } \Gamma$ is Serre : $\Leftrightarrow \mathcal{D}$ is closed under submodules, factor modules and extensions.

・ロト ・ 理 ト ・ ヨ ト ・

Exact Categories Categories of Finite Type Main Results

2-Regular Condition

Serre subcats of mod $\Gamma \iff$ sets of simple Γ -modules.

Definition

A simple Γ -module S is called 2-regular : \Leftrightarrow

- $S \in C_2(\Gamma)$, i.e, pd $S_{\Gamma} = 2$ and $\operatorname{Ext}^{0,1}_{\Gamma}(S,\Gamma) = 0$.
- **2** $\operatorname{Ext}^{2}_{\Gamma}(S, \Gamma)$ is a simple $\Gamma^{\operatorname{op}}$ -module.

It's a "regular version" of 2-Gorenstein condition.

2-regular simple Γ -mod correspond to AR ker-coker pairs in \mathcal{E} :

$$\begin{array}{c} 0 \to X \to Y \to Z \to 0 : \\ \text{AR ker-cok pair in } \mathcal{E} \end{array} \xrightarrow{} \begin{array}{c} 0 \to P_X \to P_Y \to P_Z \to S \to 0 \\ \text{2-reg. simple } \Gamma\text{-mod } S \end{array}$$

Exact Categories Categories of Finite Type Main Results

2-Regular Condition

Serre subcats of mod $\Gamma \nleftrightarrow$ sets of simple Γ -modules.

Definition

A simple Γ -module S is called 2-regular : \Leftrightarrow

1
$$S \in C_2(\Gamma)$$
, i.e, pd $S_{\Gamma} = 2$ and $\operatorname{Ext}_{\Gamma}^{0,1}(S,\Gamma) = 0$.

2 $\operatorname{Ext}^{2}_{\Gamma}(S, \Gamma)$ is a simple $\Gamma^{\operatorname{op}}$ -module.

It's a "regular version" of 2-Gorenstein condition. 2-regular simple Γ -mod correspond to AR ker-coker pairs in \mathcal{E} :

$$0 \xrightarrow{} X \xrightarrow{} Y \xrightarrow{} Z \xrightarrow{} 0 :$$

AR ker-cok pair in \mathcal{E}
$$\longleftrightarrow 0 \xrightarrow{} P_X \xrightarrow{} P_Y \xrightarrow{} P_Z \xrightarrow{} S \xrightarrow{} 0$$

2-reg. simple Γ -mod S

ヘロア ヘビア ヘビア・

Exact Categories Categories of Finite Type Main Results

AR Quivers and Main Result II

 \mathcal{E} : cat. of fin. type, Γ : its Auslander algebra.

Definition

The AR quiver $Q(\mathcal{E})$ of \mathcal{E} is the translation quiver defined by:

- Quiver = the usual quiver of *E* (or Γ)
- $X \leftarrow -Z$ if \exists an AR ker-cok pair $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{E} .

Theorem (E)

There exists a bijection between the following classes.

- **()** Exact structures on \mathcal{E} .
- 2 Sets of 2-regular simple Γ-modules.
- **③** Sets of dotted arrows in $Q(\mathcal{E})$ (= $Q(\text{proj }\Gamma)$).

ヘロア ヘビア ヘビア・

-

Exact Categories Categories of Finite Type Main Results

AR Quivers and Main Result II

 \mathcal{E} : cat. of fin. type, Γ : its Auslander algebra.

Definition

The AR quiver $Q(\mathcal{E})$ of \mathcal{E} is the translation quiver defined by:

- Quiver = the usual quiver of *E* (or Γ)
- $X \leftarrow -Z$ if \exists an AR ker-cok pair $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ in \mathcal{E} .

Theorem (E)

There exists a bijection between the following classes.

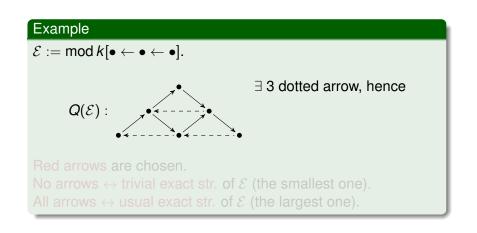
- Exact structures on \mathcal{E} .
- Ø Sets of 2-regular simple Γ-modules.
- Sets of dotted arrows in $Q(\mathcal{E}) (= Q(\text{proj } \Gamma))$.

ヘロト ヘワト ヘビト ヘビト

ъ

Exact Categories Categories of Finite Type Main Results

Example

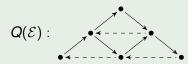


Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



∃ 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

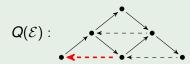
э

Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



∃ 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

э

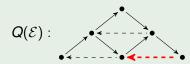
Red arrows are chosen.

Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



∃ 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

э

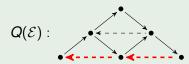
Red arrows are chosen.

Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



∃ 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

э

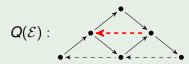
Red arrows are chosen.

Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



 \exists 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

э

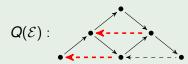
Red arrows are chosen.

Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



∃ 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

э

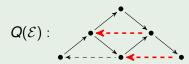
Red arrows are chosen.

Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



 \exists 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

э

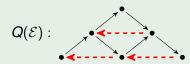
Red arrows are chosen.

Exact Categories Categories of Finite Type Main Results

Example

Example

$$\mathcal{E} := \operatorname{\mathsf{mod}} k[\bullet \leftarrow \bullet \leftarrow \bullet].$$



 \exists 3 dotted arrow, hence

 $\exists 2^3 = 8 \text{ exact str. on } \mathcal{E}$

ヘロト ヘワト ヘビト ヘビト

Classification of CM-finite IG Algebras Other Appications

Outline

• Auslander Correspondence for CM-finite IG Algebras?

- 2 Classifications of Exact Structures
 - Exact Categories
 - Categories of Finite Type
 - Main Results

3 Applications

- Classification of CM-finite IG Algebras
- Other Appications

Classification of CM-finite IG Algebras Other Appications

Characterizing CM categories of IG algebras

$$\left\{ \begin{array}{c} \text{CM-finite} \\ \text{IG-alg. } \Lambda \end{array} \right\} \xrightarrow{\text{CM}} \left\{ \begin{array}{c} \text{Exact cats } \mathcal{E} \\ \text{of finite type} \end{array} \right\} \xleftarrow{1-1} \left\{ \begin{array}{c} \text{Alg. } \Gamma + \text{sets of} \\ \text{dotted arrows} \end{array} \right\}$$

 \mathcal{E} : exact cat. of fin. type, Γ : its Auslander algebra.

Proposition $\mathcal{E} \simeq CM \Lambda$ as exact cats for some gl.dim $\Gamma < \infty$.

Projective objects in E = Injective objects in E (⇔ E is a Frobenius exact cat)

ヘロト ヘワト ヘビト ヘビト

Classification of CM-finite IG Algebras Other Appications

Characterizing CM categories of IG algebras

$$\left\{ \begin{array}{c} \text{CM-finite} \\ \text{IG-alg. } \Lambda \end{array} \right\} \xrightarrow{\text{CM}} \left\{ \begin{array}{c} \text{Exact cats } \mathcal{E} \\ \text{of finite type} \end{array} \right\} \xleftarrow{1-1} \left\{ \begin{array}{c} \text{Alg. } \Gamma + \text{sets of} \\ \text{dotted arrows} \end{array} \right\}$$

 \mathcal{E} : exact cat. of fin. type, Γ : its Auslander algebra.

Proposition $\mathcal{E} \simeq CM \land$ as exact cats for some IG algebra $\land \Leftrightarrow$ • gl.dim $\Gamma < \infty$.• Projective objects in \mathcal{E} = Injective objects in \mathcal{E}

 $(\Leftrightarrow \mathcal{E} \text{ is a Frobenius exact cat})$

・ロト ・ 同ト ・ ヨト ・ ヨト

Corollary

There exists a bijection between the following.

- OM-finite Iwanaga-Gorenstein algebras Λ.
- Pairs (Γ, A), where Γ is an algebra with gl.dim Γ < ∞ and A is a set of dotted arrows of Q(proj Γ) which is union of stable τ-orbits (i.e. A: disjoint union of S¹'s)

 (Γ, \mathbb{A}) corresponds to $\Lambda := \text{End}_{\Gamma}(P)$, where *P* is the direct sum of proj. Γ -modules which are **not** contained in \mathbb{A} .

ALL CM-finite IG algebras are obtained by the following steps.

- Take any algebra Γ with finite global dimension.
- 2 Draw the translation quiver $Q(\text{proj }\Gamma)$.
- 3 For each union of stable τ -orbit of it, compute Λ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Corollary

There exists a bijection between the following.

- O CM-finite Iwanaga-Gorenstein algebras Λ.
- Pairs (Γ, A), where Γ is an algebra with gl.dim Γ < ∞ and A is a set of dotted arrows of Q(proj Γ) which is union of stable τ-orbits (i.e. A: disjoint union of S¹'s)

 (Γ, \mathbb{A}) corresponds to $\Lambda := \text{End}_{\Gamma}(P)$, where *P* is the direct sum of proj. Γ -modules which are **not** contained in \mathbb{A} .

ALL CM-finite IG algebras are obtained by the following steps.

- Take any algebra Γ with finite global dimension.
- 2 Draw the translation quiver $Q(\text{proj }\Gamma)$.
- 3 For each union of stable τ -orbit of it, compute Λ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Corollary

There exists a bijection between the following.

- O CM-finite Iwanaga-Gorenstein algebras Λ.
- Pairs (Γ, A), where Γ is an algebra with gl.dim Γ < ∞ and A is a set of dotted arrows of Q(proj Γ) which is union of stable τ-orbits (i.e. A: disjoint union of S¹'s)

 (Γ, \mathbb{A}) corresponds to $\Lambda := \text{End}_{\Gamma}(P)$, where *P* is the direct sum of proj. Γ -modules which are **not** contained in \mathbb{A} .

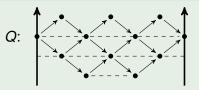
ALL CM-finite IG algebras are obtained by the following steps.

- Take any algebra Γ with finite global dimension.
- **2** Draw the translation quiver $Q(\text{proj }\Gamma)$.
- Solution of stable τ -orbit of it, compute Λ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Classification of CM-finite IG Algebras Other Appications

Example



$\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

⇒ the above is Q(proj Γ). Thus \exists 2 stable τ -orbits. \rightsquigarrow We obtain 2² = 4 CM-fin IG algebras Λ.

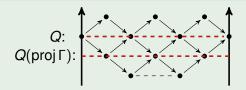
A: Orange Dotted Arrows.

Corresponding CM-finite IG Λ is the End of Red vertices, projective object in this exact structure.

ヘロア ヘビア ヘビア・

Classification of CM-finite IG Algebras Other Appications

Example



 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

 \Rightarrow the above is *Q*(proj Γ). Thus \exists **2** stable τ -orbits.

 \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

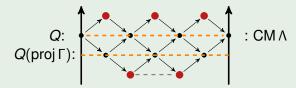
A: Orange Dotted Arrows.

Corresponding CM-finite IG Λ is the End of Red vertices, projective object in this exact structure.

・ロット (雪) () () () ()

Classification of CM-finite IG Algebras Other Appications

Example



 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

 \Rightarrow the above is *Q*(proj Γ). Thus \exists **2** stable τ -orbits.

 \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

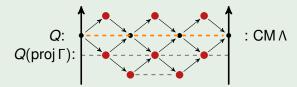
A: Orange Dotted Arrows.

Corresponding CM-finite IG Λ is the End of Red vertices, projective object in this exact structure.

ヘロト ヘワト ヘビト ヘビト

Classification of CM-finite IG Algebras Other Appications

Example



 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

 \Rightarrow the above is *Q*(proj Γ). Thus \exists **2** stable τ -orbits.

 \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

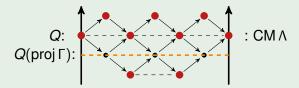
A: Orange Dotted Arrows.

Corresponding CM-finite IG Λ is the End of Red vertices, projective object in this exact structure.

ヘロト ヘワト ヘビト ヘビト

Classification of CM-finite IG Algebras Other Appications

Example



 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

 \Rightarrow the above is *Q*(proj Γ). Thus \exists **2** stable τ -orbits.

 \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

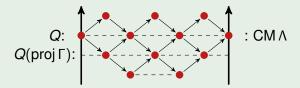
A: Orange Dotted Arrows.

Corresponding CM-finite IG Λ is the End of Red vertices, projective object in this exact structure.

ヘロト ヘワト ヘビト ヘビト

Classification of CM-finite IG Algebras Other Appications

Example



 $\Gamma := kQ/(\text{commutativity and zero relation})$ (two vertical arrows are identified).

 \Rightarrow the above is *Q*(proj Γ). Thus \exists **2** stable τ -orbits.

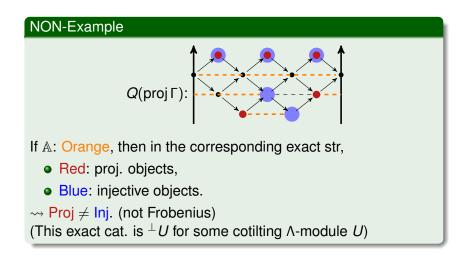
 \rightsquigarrow We obtain $2^2 = 4$ CM-fin IG algebras Λ .

A: Orange Dotted Arrows.

Corresponding CM-finite IG Λ is the End of Red vertices, projective object in this exact structure.

ヘロト ヘワト ヘビト ヘビト

Classification of CM-finite IG Algebras Other Appications



ヘロン ヘアン ヘビン ヘビン

Classification of CM-finite IG Algebras Other Appications

Other Applications

For an exact category \mathcal{E} of finite type,

- \mathcal{E} has enough projectives and injectives (if *k* is a field).
- the relation of the Grothendieck group K₀(*E*) is generated by AR sequences in *E*.

Instead of CM-fin IG alg, a similar classification is available for cotilting Λ -modules *U* s.t. $^{\perp}U$ is of finite type.

Auslander-type correspondence for representation-finite R-orders for dim $R \ge 2$. and so on...

・ロト ・ 理 ト ・ ヨ ト ・

-