HOW TO CAPTURE \(t\)-STRUCTURES BY SILTING THEORY

TAKAHIDE ADACHI AND YUYA MIZUNO

Abstract. In this note, we study a relationship between silting objects and \(t\)-structures. We introduce the notion of ST-pairs of thick subcategories of a given triangulated category, a prototypical example of which is the pair of the bounded homotopy category and the bounded derived category of a finite-dimensional algebra. For an ST-pair \((C, D)\), we construct an injective map from silting objects in \(C\) to bounded \(t\)-structures on \(D\), and show that the map is bijective if and only if \(C\) is silting-discrete. Moreover, using cluster tilting theory, we give a new class of silting-discrete triangulated categories.

This is based on a joint work with Dong Yang [3]. Throughout this note, \(K\) is a field and \(T\) is a \(K\)-linear Hom-finite Krull-Schmidt triangulated category with shift functor [1].

Our aim of this note is to give a construction of bounded \(t\)-structures by silting objects. First we recall the notion of \(t\)-structures, which was introduced by Beilinson-Bernstein-Deligne [8].

Definition 1. A \(t\)-structure on \(T\) is a pair \((T^{\leq 0}, T^{\geq 0})\) of strictly full subcategories of \(T\) such that

1. \(T^{\leq 1} \supseteq T^{\leq 0}\) and \(T^{\geq 0} \supseteq T^{\geq 1}\),
2. \(\text{Hom}_T(X, Y) = 0\) for all \(X \in T^{\leq 0}\) and \(Y \in T^{\geq 1}\),
3. for each \(Z \in T\), there is a triangle \(X \to Z \to Y \to X[1]\) in \(T\) with \(X \in T^{\leq 0}\) and \(Y \in T^{\geq 1}\).

Here, for any integer \(n\), let \(T^{\leq n} = T^{\leq 0}[-n]\) and \(T^{\geq n} = T^{\geq 0}[-n]\).

Let \((T^{\leq 0}, T^{\geq 0})\) be a \(t\)-structure on \(T\). Then the heart \(T^0 := T^{\leq 0} \cap T^{\geq 0}\) is an abelian category. We call \((T^{\leq 0}, T^{\geq 0})\) a bounded \(t\)-structure if

\[T = \bigcup_{n \in \mathbb{Z}} T^{\leq n} = \bigcup_{n \in \mathbb{Z}} T^{\geq n}, \]

or equivalently, \(T = \text{thick} T^0\). We denote by \(t\text{-str}_{bd} T\) the set of bounded \(t\)-structures on \(T\).

We give an example of bounded \(t\)-structures.

Example 2. Let \(\Lambda\) be a finite-dimensional algebra and \(D := D^b(\text{mod}\Lambda)\) the bounded derived category. We define two full subcategories as follows:

\[D^{\leq 0} := \{ X \in D \mid H^n X = 0 \text{ for all integers } n > 0\}, \]
\[D^{\geq 0} := \{ X \in D \mid H^n X = 0 \text{ for all integers } n < 0\}. \]

Then it is well-known that \((D^{\leq 0}, D^{\geq 0})\) is a bounded \(t\)-structure on \(D\).

The detailed version of this note will be submitted for publication elsewhere.
Next we recall the definition of silting objects, which was introduced by Keller–Vossieck [17]. For details, we refer to [5].

Definition 3. An object M of \mathcal{T} is said to be *silting* if $\text{Hom}_\mathcal{T}(M, M[n]) = 0$ for all integers $n > 0$ and $\mathcal{T} = \text{thick} M$. We denote by $\text{silt}\mathcal{T}$ the set of isomorphism classes of basic silting objects of \mathcal{T}.

We give a typical example of a silting object.

Example 4. Let Λ be a finite-dimensional algebra. Then Λ is a silting object of the bounded homotopy category $K^b(\text{proj}\Lambda)$.

We introduce the notion of ST-pairs, which plays a central role in this note. For an object M of \mathcal{T}, we define full subcategories of \mathcal{T} as follows:

$$T^0_M := \{X \in \mathcal{T} | \text{Hom}_\mathcal{T}(M, X[n]) = 0 \text{ for all integers } n \neq 0\},$$

$$T^0_M := \{X \in \mathcal{T} | \text{Hom}_\mathcal{T}(M, X[n]) = 0 \text{ for all integers } n < 0\},$$

$$T^0_M := T^0_M \cap T^0_M.$$

Definition 5. Let \mathcal{C} and \mathcal{D} be thick subcategories of \mathcal{T}. The pair $(\mathcal{C}, \mathcal{D})$ is called an *ST-pair* inside \mathcal{T} if there exists a silting object M of \mathcal{C} such that

(ST1) (T^0_M, T^0_M) is a t-structure on \mathcal{T},

(ST2) $T^0_M \subseteq \mathcal{D}$,

(ST3) $\mathcal{D} = \text{thick} T^0_M$.

When there is a need to emphasise the silting object M, we call the triple $(\mathcal{C}, \mathcal{D}, M)$ an *ST-triple*.

The following two examples are our motivating examples.

Example 6. Let Λ be a finite-dimensional algebra and $\mathcal{T} := D^b(\text{mod}\Lambda)$. Then we have

$$T^0_M := \{X \in \mathcal{T} | H^n X = 0 \text{ for all integers } n > 0\},$$

$$T^0_M := \{X \in \mathcal{T} | H^n X = 0 \text{ for all integers } n < 0\}.$$

We obtain that Λ is a silting object of $\mathcal{C} := K^b(\text{proj}\Lambda)$ and (T^0_M, T^0_M) is a (bounded) t-structure on \mathcal{T}. Thus $(\mathcal{C} = K^b(\text{proj}\Lambda), \mathcal{D} := \mathcal{T} = D^b(\text{mod}\Lambda))$ is an ST-pair inside \mathcal{T}.

Example 7. Let Γ be a dg algebra satisfying the following conditions:

1. $H^n(\Gamma) = 0$ for each integer $n > 0$,
2. $H^0(\Gamma)$ is finite-dimensional,
3. $D_{\text{id}}(\Gamma) \subseteq \text{per}(\Gamma)$, where $\text{per}(\Gamma)$ is the perfect derived category of Γ and $D_{\text{id}}(\Gamma)$ is the full subcategory of the derived category $D(\Gamma)$ consisting of dg Γ-modules whose total cohomology is finite-dimensional.

Let $\mathcal{T} := \text{per}(\Gamma)$. Then \mathcal{T} is Hom-finite Krull–Schmidt by [14, Proposition 2.5], (T^0_M, T^0_M) is a t-structure on \mathcal{T} and $T^0_M \subseteq \text{thick} T^0_M$ (see [7, Proposition 2.7] and [14, Propositions 2.5 and 2.1(c)]). Since Γ is a non-positive dg algebra, Γ is a silting object of \mathcal{T}. Moreover, we have $D_{\text{id}}(\Gamma) = \text{thick} T^0_M$. Thus $(\mathcal{C} := \mathcal{T} = \text{per}(\Gamma), \mathcal{D} := D_{\text{id}}(\Gamma))$ is an ST-pair inside \mathcal{T}.
Fix an ST-pair \((C, D)\). For a silting object \(M\) of \(C\), we define full subcategories of \(D\) as follows:

\[
D^\leq_M := T^\leq_M \cap D = \{X \in D \mid \text{Hom}_T(M, X[n]) = 0 \text{ for all integers } n > 0\},
\]

\[
D^\geq_M := T^\geq_M \cap D = T^\geq_M,
\]

\[
D^0_M := D^\leq_M \cap D^\geq_M.
\]

The following proposition implies that the conditions (ST1–3) are satisfied for all silting objects of \(C\), which allows us to define a well-defined map from silting objects in \(C\) to bounded \(t\)-structures on \(D\).

Proposition 8. Let \((C, D, M)\) be an ST-triple and let \(N\) be an arbitrary silting object of \(C\). Then the following statements hold.

1. \((C, D, N)\) is an ST-triple.
2. \(T^0_N \simeq \mod \text{End}_T(N)\).
3. \((D^\leq_N, D^\geq_N)\) is a bounded \(t\)-structure on \(D\) and \(D^0_N = T^0_N\).

The following theorem is one of our main results in this note.

Theorem 9. Let \((C, D)\) be an ST-pair. Then there is an injective map \(\Psi : \text{silt } C \to t\text{-str}_{bd} D\) given by \(M \mapsto (D^\leq_M, D^\geq_M)\).

In the following, we give a characterisation of that \(\Psi\) is bijective from the viewpoint of silting theory. For objects \(M, N\) of \(T\), we write \(M \geq N\) if \(\text{Hom}_T(M, N[n]) = 0\) for all positive integers \(n\). Then the relation \(\geq\) gives a partial order on \(\text{silt } T\) by [5, Theorem 2.11]. For a basic silting object \(M\) and a positive integer \(n\), let

\[n_M\text{-silt } T := \{N \in \text{silt } T \mid M \geq N \geq M[n-1]\}.
\]

We recall the notion of silting-discrete triangulated categories, which plays an important role in this note.

Definition 10. A triangulated category \(T\) is said to be silting-discrete if, for any basic silting object \(M\), the set \(n_M\text{-silt } T\) is finite for any positive integer \(n\).

By [4, Proposition 3.8], \(T\) is silting-discrete if and only if, for any fixed basic silting object \(M\) of \(T\), the set \(n_M\text{-silt } T\) is finite for any positive integer \(n\). Moreover, if \(T\) is silting-discrete, then we can obtain all basic silting objects in \(T\) from any fixed basic silting object by a finite sequence of mutations (see [4, Corollary 3.9]). By a result of [6], we have a criterion for silting-discreteness.

Lemma 11 ([6, Theorem 2.4]). A triangulated category \(T\) is silting-discrete if and only if the set \(2_M\text{-silt } T\) is finite for any basic silting object \(M\) of \(T\).

Note that \(2_M\text{-silt } T\) corresponds bijectively to the set of isomorphism classes of basic support \(\tau\)-tilting \(\text{End}_T(M)\)-modules (see [12] and [2]).

We collect some examples of silting-discrete triangulated categories.

Example 12. Assume that K is algebraically closed. The bounded homotopy category $K^b(\text{proj}\Lambda)$ is silting-discrete if Λ is one of the following finite-dimensional K-algebras:

1. local algebras (see [5, Theorem 2.26]),
2. representation-finite hereditary algebras (see [4, Example 3.7]),
3. derived-discrete algebras of finite global dimension (see [9, Proposition 6.12]),
4. representation-finite symmetric algebras (see [4, Theorem 5.6]),
5. Brauer graph algebras whose Brauer graph contains at most one cycle of odd length and no cycle of even length (see [1, Theorem 6.7]).

We have the following theorem which is a main result of this note.

Theorem 13. Let (C, D) be an ST-pair inside T. Then the following statements are equivalent.

1. The map $\Psi : \text{silt} C \to \text{t-str}_{td} D$ is bijective.
2. C is silting-discrete.
3. The heart of every bounded t-structure on D has a projective generator.

In the rest of this note, we give examples of silting-discrete triangulated categories by cluster tilting theory. We recall the notion of Calabi-Yau pairs. Fix an integer $d \geq 1$.

Definition 14. An ST-pair (C, D) inside C is called a $(d + 1)$-Calabi-Yau pair if there exists a bifunctorial isomorphism for any $X \in D$ and $Y \in C$:

$$D \text{Hom}_C(X, Y) \simeq \text{Hom}_C(Y, X[d + 1]).$$

If M is a silting object of C, then (C, D, M) is a $(d + 1)$-Calabi-Yau triple in the sense of [13, Section 5.1]. Note that, for silting objects M and N, (C, D, M) is a $(d + 1)$-Calabi-Yau triple if and only if (C, D, N) is a $(d + 1)$-Calabi-Yau triple.

Fix a $(d + 1)$-Calabi-Yau pair (C, D). Consider the triangle quotient

$$U := C/D,$$

which is called the cluster category. Let $\pi : C \to U$ be the canonical projection functor. We call $T \in U$ a d-cluster tilting object if

$$\text{add} T = \{X \in U \mid \text{Hom}_U(X, T[i]) = 0 \text{ for } 1 \leq i \leq d - 1\} = \{X \in U \mid \text{Hom}_U(T, X[i]) = 0 \text{ for } 1 \leq i \leq d - 1\}.$$

Note that, if $d = 1$, then we have $\text{add} T = U$. We denote by d-ctilt U the set of isomorphism classes of basic d-cluster tilting objects of U. The following proposition is a basic result for Calabi-Yau triples.

Proposition 15 ([13, Theorem 5.8 and Corollary 5.12]). For a $(d + 1)$-Calabi-Yau triple (C, D, M), the following statements hold.

1. The category U is a d-Calabi-Yau triangulated category.
2. The functor π induces an injection

$$d_M \text{-silt } C \to d \text{-ctilt } U,$$

which is a bijection if $d = 1$ or $d = 2$.

Now we give a criterion for \(C \) being silting-discrete in terms of the cluster category \(U \) as follows.

Theorem 16. For a \((d+1)-\text{Calabi–Yau pair} \ (C,D)\), the following statements hold.

1. Assume \(d \geq 2 \). If \(d\text{-ctilt} \ U \) is a finite set, then \(C \) is silting-discrete. The converse holds true if \(d = 2 \).
2. Assume that \(d = 1 \) or \(2 \) and let \(N \) be a basic silting object of \(C \). Then \(C \) is silting-discrete if and only if \(2N\text{-silt} \ C \) is a finite set.

As an application of Theorem 16, we show that

- the perfect derived category of a derived preprojective algebra associated with a quiver is silting-discrete if and only if the quiver is Dynkin,
- the perfect derived category of the complete Ginzburg dg algebra associated with a quiver with a nondegenerate potential is silting-discrete if and only if the quiver is mutation equivalent to a Dynkin quiver.

Derived preprojective algebras. Let \(Q \) be a finite quiver and \(d > 0 \) an integer. Define a graded quiver \(\widetilde{Q} \) as follows: \(\widetilde{Q} \) has the same vertices as \(Q \) and three types of arrows

- the arrows of \(Q \), in degree 0,
- \(\alpha^* : j \rightarrow i \) in degree \(-d+1\), for each arrow \(\alpha : i \rightarrow j \) of \(Q \),
- \(t_i : i \rightarrow i \) in degree \(-d\), for each vertex \(i \) of \(Q \).

The \textit{derived \((d+1)\)-preprojective algebra} \(\Gamma := \Gamma_{d+1}(Q) \) is the dg algebra \((K\widetilde{Q},d)\), where \(K\widetilde{Q} \) is the graded path algebra of \(\widetilde{Q} \) and \(d \) is the unique \(K \)-linear differential which satisfies the graded Leibniz rule

\[
\text{d}(ab) = \text{d}(a)b + (-1)^p a\text{d}(b),
\]

where \(a \) is homogeneous of degree \(p \), and which takes the following values

- \(\text{d}(e_i) = 0 \) for any vertex \(i \) of \(Q \), where \(e_i \) is the trivial path at \(i \),
- \(\text{d}(\alpha) = 0 \) for any arrow \(\alpha \) of \(Q \),
- \(\text{d}(\alpha^*) = 0 \) for any arrow \(\alpha^* \) of \(Q \),
- \(\text{d}(t_i) = e_i \sum_{\alpha}(\alpha\alpha^* - \alpha^*\alpha)e_i \) for any vertex \(i \) of \(Q \), where \(\alpha \) runs over all arrows of \(Q \).

Note that if \(d = 1 \), then \(H^0(\Gamma) \) is the preprojective algebra associated with \(Q \), and if \(d \geq 2 \), then \(H^0(\Gamma) \) is the path algebra of \(Q \).

Since \(\Gamma \) is concentrated in non-positive degrees, \(\Gamma \) is a silting object of \(\text{per}(\Gamma) \). Moreover, by [15, Theorem 6.3] and [16, Lemma 4.1], we have \(D_\text{fd}(\Gamma) \subseteq \text{per}(\Gamma) \) and there is a functorial isomorphism for \(X \in D_\text{fd}(\Gamma) \) and \(Y \in D(\Gamma) \)

\[
D \text{Hom}(X,Y) \simeq \text{Hom}(Y,X[d+1]),
\]

where \(D := \text{Hom}_K(-,K) \).

The following lemma gives an example of ST-pairs.

Lemma 17. Let \(Q \) be a finite quiver and \(\Gamma = \Gamma_{d+1}(Q) \). Then the following conditions are equivalent:

1. \(\text{per}(\Gamma) \) is Hom-finite and Krull–Schmidt,
2. \(H^0(\Gamma) \) is finite-dimensional,
(3) \(d = 1 \) and \(Q \) is Dynkin, or \(d \geq 2 \) and \(Q \) has no oriented cycles.

If these conditions are satisfied, then \((\text{per}(\Gamma), \text{D}_{\text{rd}}(\Gamma), \Gamma)\) is an ST-triple inside \(\text{per}(\Gamma) \), and moreover, a \((d + 1)\)-Calabi–Yau triple.

Now we apply Theorem 16 to perfect derived categories of derived preprojective algebras.

Corollary 18. Let \(Q \) be a finite quiver and \(\Gamma = \Gamma_{d+1}(Q) \). Assume that \(K \) is algebraically closed and \(H^0(\Gamma) \) is finite-dimensional. Then \(\text{per}(\Gamma) \) is silting-discrete if and only if \(Q \) is Dynkin.

Complete Ginzburg dg algebras. We refer to [10] for the definition and properties of quiver mutation and mutation of quivers with potential.

Let \(Q \) be a finite quiver and \(W \) a potential. Let \(\Gamma := \hat{\Gamma}(Q, W) \) be the complete Ginzburg dg algebra associated with the quiver with potential \((Q, W)\), see [11, 18]. The algebra \(H^0\Gamma \) is known as the Jacobian algebra. We say that \((Q, W)\) is Jacobi-finite if the Jacobian algebra is finite-dimensional.

By definition, \(\Gamma \) is concentrated in non-positive degrees and \(\Gamma \) is a silting object of \(\text{per}(\Gamma) \). By [18, Theorem A.16 and A.17], we obtain that \((Q, W)\) is Jacobi-finite if and only if \((\text{per}(\Gamma), \text{D}_{\text{rd}}(\Gamma), \Gamma)\) is a 3-Calabi–Yau triple. Now we apply Theorem 16 to perfect derived categories of complete Ginzburg dg algebras.

Corollary 19. Let \((Q, W)\) be a Jacobi-finite quiver with potential and \(\Gamma := \hat{\Gamma}(Q, W) \). Assume that \(K \) is algebraically closed and \(W \) is nondegenerate (see [10]). Then \(\text{per}(\Gamma) \) is silting-discrete if and only if \(Q \) is related to a Dynkin quiver by a finite sequence of quiver mutations.

References

Takahide Adachi
Graduate school of Science
Osaka Prefecture University
1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, JAPAN
E-mail address: adachi@mi.s.osakafu-u.ac.jp

Yuya Mizuno
Department of Mathematics, Faculty of Science
Shizuoka University
836 Ohya, Suruga-ku, Shizuoka, 422-8529, JAPAN
E-mail address: yuya.mizuno@shizuoka.ac.jp

—7—