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Abstract. In this note, we study a relationship between silting objects and t-structures.
We introduce the notion of ST-pairs of thick subcategories of a given triangulated cate-
gory, a prototypical example of which is the pair of the bounded homotopy category and
the bounded derived category of a finite-dimensional algebra. For an ST-pair (C,D), we
construct an injective map from silting objects in C to bounded t-structures on D, and
show that the map is bijective if and only if C is silting-discrete. Moreover, using cluster
tilting theory, we give a new class of silting-discrete triangulated categories.

This is based on a joint work with Dong Yang [3].
Throughout this note, K is a field and T is a K-linear Hom-finite Krull–Schmidt tri-

angulated category with shift functor [1].
Our aim of this note is to give a construction of bounded t-structures by silting objects.

First we recall the notion of t-structures, which was introduced by Beilinson–Bernstein–
Deligne [8].

Definition 1. A t-structure on T is a pair (T≤0,T≥0) of strictly full subcategories of T
such that

(1) T≤1 ⊇ T≤0 and T≥0 ⊇ T≥1,
(2) HomT(X, Y ) = 0 for all X ∈ T≤0 and Y ∈ T≥1,
(3) for each Z ∈ T, there is a triangle X → Z → Y → X[1] in T with X ∈ T≤0 and

Y ∈ T≥1.

Here, for any integer n, let T≤n = T≤0[−n] and T≥n = T≥0[−n].

Let (T≤0,T≥0) be a t-structure on T. Then the heart T0 := T≤0 ∩ T≥0 is an abelian
category. We call (T≤0,T≥0) a bounded t-structure if

T =
∪
n∈Z

T≤n =
∪
n∈Z

T≥n,

or equivalently, T = thickT0. We denote by t-strbdT the set of bounded t-structures on T.
We give an example of bounded t-structures.

Example 2. Let Λ be a finite-dimensional algebra and D := Db(modΛ) the bounded
derived category. We define two full subcategories as follows:

D≤0 := {X ∈ D | HnX = 0 for all integers n > 0},
D≥0 := {X ∈ D | HnX = 0 for all integers n < 0}.

Then it is well-known that (D≤0,D≥0) is a bounded t-structure on D.

The detailed version of this note will be submitted for publication elsewhere.
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Next we recall the definition of silting objects, which was introduced by Keller–Vossieck
[17]. For details, we refer to [5].

Definition 3. An objectM of T is said to be silting if HomT(M,M [n]) = 0 for all integers
n > 0 and T = thickM . We denote by siltT the set of isomorphism classes of basic silting
objects of T.

We give a typical example of a silting object.

Example 4. Let Λ be a finite-dimensional algebra. Then Λ is a silting object of the
bounded homotopy category Kb(projΛ).

We introduce the notion of ST-pairs, which plays a central role in this note. For an
object M of T, we define full subcategories of T as follows:

T≤0
M := {X ∈ T | HomT(M,X[n]) = 0 for all integers n > 0},

T≥0
M := {X ∈ T | HomT(M,X[n]) = 0 for all integers n < 0},

T0
M := T≤0

M ∩ T≥0
M .

Definition 5. Let C and D be thick subcategories of T. The pair (C,D) is called an
ST-pair inside T if there exists a silting object M of C such that

(ST1) (T≤0
M ,T≥0

M ) is a t-structure on T,
(ST2) T≥0

M ⊆ D,
(ST3) D = thickT0

M .

When there is a need to emphasise the silting object M , we call the triple (C,D,M) an
ST-triple.

The following two examples are our motivating examples.

Example 6. Let Λ be a finite-dimensional algebra and T := Db(modΛ). Then we have

T≤0
Λ = {X ∈ T | HnX = 0 for all integers n > 0},

T≥0
Λ = {X ∈ T | HnX = 0 for all integers n < 0}.

We obtain that Λ is a silting object of C := Kb(projΛ) and (T≤0
Λ ,T≥0

Λ ) is a (bounded)
t-structure on T. Thus (C = Kb(projΛ),D := T = Db(modΛ)) is an ST-pair inside T.

Example 7. Let Γ be a dg algebra satisfying the following conditions:

(1) Hn(Γ) = 0 for each integer n > 0,
(2) H0(Γ) is finite-dimensional,
(3) Dfd(Γ) ⊆ per(Γ), where per(Γ) is the perfect derived category of Γ and Dfd(Γ)

is the full subcategory of the derived category D(Γ) consisting of dg Γ-modules
whose total cohomology is finite-dimensional.

Let T := per(Γ). Then T is Hom-finite Krull–Schmidt by [14, Proposition 2.5], (T≤0
Γ ,T≥0

Γ )

is a t-structure on T and T≥0
Γ ⊆ thickT0

Γ (see [7, Proposition 2.7] and [14, Propositions 2.5
and 2.1(c)]). Since Γ is a non-positive dg algebra, Γ is a silting object of T. Moreover, we
have Dfd(Γ) = thickT0

Γ. Thus (C := T = per(Γ),D := Dfd(Γ)) is an ST-pair inside T.
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Fix an ST-pair (C,D). For a silting object M of C, we define full subcategories of D as
follows:

D≤0
M := T≤0

M ∩ D = {X ∈ D | HomT(M,X[n]) = 0 for all integers n > 0},
D≥0

M := T≥0
M ∩ D = T≥0

M ,

D0
M := D≤0

M ∩ D≥0
M .

The following proposition implies that the conditions (ST1–3) are satisfied for all silting
objects of C, which allows us to define a well-defined map from silting objects in C to
bounded t-structures on D.

Proposition 8. Let (C,D,M) be an ST-triple and let N be an arbitrary silting object of
C. Then the following statements hold.

(1) (C,D, N) is an ST-triple.
(2) T0

N ≃ mod EndT(N).
(3) (D≤0

N ,D≥0
N ) is a bounded t-structure on D and D0

N = T0
N .

The following theorem is one of our main results in this note.

Theorem 9. Let (C,D) be an ST-pair. Then there is an injective map

Ψ : siltC → t-strbdD

given by M 7→ (D≤0
M ,D≥0

M ).

In the following, we give a characterisation of that Ψ is bijective from the viewpoint
of silting theory. For objects M,N of T, we write M ≥ N if HomT(M,N [n]) = 0 for all
positive integers n. Then the relation ≥ gives a partial order on siltT by [5, Theorem
2.11]. For a basic silting object M and a positive integer n, let

nM -siltT := {N ∈ siltT | M ≥ N ≥ M [n− 1]}.

We recall the notion of silting-discrete triangulated categories, which plays an important
role in this note.

Definition 10. A triangulated category T is said to be silting-discrete if, for any basic
silting object M , the set nM -siltT is finite for any positive integer n.

By [4, Proposition 3.8], T is silting-discrete if and only if, for any fixed basic silting
object M of T, the set nM -siltT is finite for any positive integer n. Moreover, if T is
silting-discrete, then we can obtain all basic silting objects in T from any fixed basic
silting object by a finite sequence of mutations (see [4, Corollary 3.9]). By a result of [6],
we have a criterion for silting-discreteness.

Lemma 11 ([6, Theorem 2.4]). A triangulated category T is silting-discrete if and only
if the set 2M -siltT is finite for any basic silting object M of T.

Note that 2M -siltT corresponds bijectively to the set of isomorphism classes of basic
support τ -tilting EndT(M)-modules (see [12] and [2]).

We collect some examples of silting-discrete triangulated categories.
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Example 12. Assume that K is algebraically closed. The bounded homotopy category
Kb(projΛ) is silting-discrete if Λ is one of the following finite-dimensional K-algebras:

(1) local algebras (see [5, Theorem 2.26]),
(2) representation-finite hereditary algebras (see [4, Example 3.7]),
(3) derived-discrete algebras of finite global dimension (see [9, Proposition 6.12]),
(4) representation-finite symmetric algebras (see [4, Theorem 5.6]),
(5) Brauer graph algebras whose Brauer graph contains at most one cycle of odd

length and no cycle of even length (see [1, Theorem 6.7]).

We have the following theorem which is a main result of this note.

Theorem 13. Let (C,D) be an ST-pair inside T. Then the following statements are
equivalent.

(1) The map Ψ : siltC → t-strbdD is bijective.
(2) C is silting-discrete.
(3) The heart of every bounded t-structure on D has a projective generator.

In the rest of this note, we give examples of silting-discrete triangulated categories by
cluster tilting theory. We recall the notion of Calabi–Yau pairs. Fix an integer d ≥ 1.

Definition 14. An ST-pair (C,D) inside C is called a (d + 1)-Calabi–Yau pair if there
exists a bifunctorial isomorphism for any X ∈ D and Y ∈ C:

DHomC(X, Y ) ≃ HomC(Y,X[d+ 1]).

If M is a silting object of C, then (C,D,M) is a (d+1)-Calabi–Yau triple in the sense of
[13, Section 5.1]. Note that, for silting objects M and N , (C,D,M) is a (d+1)-Calabi–Yau
triple if and only if (C,D, N) is a (d+ 1)-Calabi–Yau triple.

Fix a (d+ 1)-Calabi–Yau pair (C,D). Consider the triangle quotient

U := C/D,

which is called the cluster category. Let π : C → U be the canonical projection functor.
We call T ∈ U a d-cluster tilting object if

addT = {X ∈ U | HomU(X,T [i]) = 0 for 1 ≤ i ≤ d− 1}
= {X ∈ U | HomU(T,X[i]) = 0 for 1 ≤ i ≤ d− 1}.

Note that, if d = 1, then we have addT = U. We denote by d -ctiltU the set of isomorphism
classes of basic d-cluster tilting objects of U. The following proposition is a basic result
for Calabi-Yau triples.

Proposition 15 ([13, Theorem 5.8 and Corollary 5.12]). For a (d+1)-Calabi–Yau triple
(C,D,M), the following statements hold.

(1) The category U is a d-Calabi–Yau triangulated category.
(2) The functor π induces an injection

dM -siltC → d -ctiltU,

which is a bijection if d = 1 or d = 2.
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Now we give a criterion for C being silting-discrete in terms of the cluster category U
as follows.

Theorem 16. For a (d+ 1)-Calabi–Yau pair (C,D), the following statements hold.

(1) Assume d ≥ 2. If d -ctiltU is a finite set, then C is silting-discrete. The converse
holds true if d = 2.

(2) Assume that d = 1 or 2 and let N be a basic silting object of C. Then C is
silting-discrete if and only if 2N -siltC is a finite set.

As an application of Theorem 16, we show that

• the perfect derived category of a derived preprojective algebra associated with a
quiver is silting-discrete if and only if the quiver is Dynkin,

• the perfect derived category of the complete Ginzburg dg algebra associated with
a quiver with a nondegenerate potential is silting-discrete if and only if the quiver
is mutation equivalent to a Dynkin quiver.

Derived preprojective algebras. Let Q be a finite quiver and d > 0 an integer. Define
a graded quiver Q̃ as follows: Q̃ has the same vertices as Q and three types of arrows

• the arrows of Q, in degree 0,
• α∗ : j → i in degree −d+ 1, for each arrow α : i → j of Q,
• ti : i → i in degree −d, for each vertex i of Q.

The derived (d + 1)-preprojective algebra Γ := Γd+1(Q) is the dg algebra (KQ̃, d), where
KQ̃ is the graded path algebra of Q̃ and d is the uniqueK-linear differential which satisfies
the graded Leibniz rule

d(ab) = d(a)b+ (−1)pad(b),

where a is homogeneous of degree p, and which takes the following values

• d(ei) = 0 for any vertex i of Q, where ei is the trivial path at i,
• d(α) = 0 for any arrow α of Q,
• d(α∗) = 0 for any arrow α∗ of Q,
• d(ti) = ei

∑
α(αα

∗ − α∗α)ei for any vertex i of Q, where α runs over all arrows of
Q.

Note that if d = 1, then H0(Γ) is the preprojective algebra associated with Q, and if
d ≥ 2, then H0(Γ) is the path algebra of Q.
Since Γ is concentrated in non-positive degrees, Γ is a silting object of per(Γ). Moreover,

by [15, Theorem 6.3] and [16, Lemma 4.1], we have Dfd(Γ) ⊆ per(Γ) and there is a
functorial isomorphism for X ∈ Dfd(Γ) and Y ∈ D(Γ)

DHom(X, Y ) ≃ Hom(Y,X[d+ 1]),

where D := HomK(−, K).
The following lemma gives an example of ST-pairs.

Lemma 17. Let Q be a finite quiver and Γ = Γd+1(Q). Then the following conditions
are equivalent:

(1) per(Γ) is Hom-finite and Krull–Schmidt,
(2) H0(Γ) is finite-dimensional,
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(3) d = 1 and Q is Dynkin, or d ≥ 2 and Q has no oriented cycles.

If these conditions are satisfied, then (per(Γ),Dfd(Γ),Γ) is an ST-triple inside per(Γ), and
moreover, a (d+ 1)-Calabi–Yau triple.

Now we apply Theorem 16 to perfect derived categories of derived preprojective alge-
bras.

Corollary 18. Let Q be a finite quiver and Γ = Γd+1(Q). Assume that K is algebraically
closed and H0(Γ) is finite-dimensional. Then per(Γ) is silting-discrete if and only if Q is
Dynkin.

Complete Ginzburg dg algebras. We refer to [10] for the definition and properties of
quiver mutation and mutation of quivers with potential.

Let Q be a finite quiver andW a potential. Let Γ := Γ̂(Q,W ) be the complete Ginzburg
dg algebra associated with the quiver with potential (Q,W ), see [11, 18]. The algebra
H0Γ is known as the Jacobian algebra. We say that (Q,W ) is Jacobi-finite if the Jacobian
algebra is finite-dimensional.

By definition, Γ is concentrated in non-positive degrees and Γ is a silting object of
per(Γ). By [18, Theorem A.16 and A.17], we obtain that (Q,W ) is Jacobi-finite if and
only if (per(Γ),Dfd(Γ),Γ) is a 3-Calabi–Yau triple. Now we apply Theorem 16 to perfect
derived categories of complete Ginzburg dg algebras.

Corollary 19. Let (Q,W ) be a Jacobi-finite quiver with potential and Γ := Γ̂(Q,W ).
Assume that K is algebraically closed and W is nondegenerate (see [10]). Then per(Γ) is
silting-discrete if and only if Q is related to a Dynkin quiver by a finite sequence of quiver
mutations.
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