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Abstract. In this note, we discuss the existence of silting objects in triangulated cat-
egories.

Introduction

Tilting theory is now an essential tool in the study of finite dimensional algebras, and
it influences many branches of mathematics. In the theory, silting objects play a central
and important role. Then, we would think how many such objects there exist.

Throughout this note, Λ denotes a finite dimensional algebra over a field k.
The perfect derived category Kb(projΛ) of Λ has a trivial silting (tilting) object Λ,

and silting mutation makes infinitely many silting objects in Kb(projΛ). Moreover, the
bounded derived category Db(modΛ) over Λ has a silting object if and only if Λ is of
finite global dimension. On the other hand, we know that the stable module category of
a non-semisimple selfinjective algebra admits no silting object. (See [1].)

These facts inspire us with the idea that no non-zero silting object belongs to the
singularity category Dsg(Λ) of Λ, which is the Verdier quotient of Db(modΛ) by Kb(projΛ).
Indeed, if the global dimension of Λ is finite, then the singularity category is zero. If Λ
is (non-semisimple) selfinjective, then the stable module category is triangle equivalent
to the singularity category [5]. In both the cases, the singularity categories never have a
non-zero silting object.

A main result of this note is the following:

Theorem 1. The singularity category of Λ admits no non-zero silting object if Λ has
finite right selfinjective dimension.

1. Silting theory

1.1. Silting objects. Throughout this note, let T be a Krull-Schmidt triangulated cat-
egory which is k-linear and Hom-finite .

Let us recall the definition of silting objects.

Definition 2. An object T of T is said to be presilting if it satisfies HomT (T, T [i]) = 0
for any positive integer i > 0. It is called silting if in additional T = thickT . Here, thickT
stands for the smallest thick subcategory of T containing T .

We denote by silt T the set of isomorphism classes of basic silting objects of T .

A typical example of silting objects is the stalk complex Λ (and its shifts) in the perfect
derived category Kb(projΛ). Moreover, we easily observe the following.

The detailed version of this paper will be submitted for publication elsewhere.
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Example 3. Let Λ be an algebra presented by the quiver 1 → 2. It is well-known that
the bounded derived category over Λ admits the Auslander-Reiten quiver of the form:
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where the shift [1] is given by the operation ‘+3’. (See [3].) Then, the following equalities
are obtained easily:

silt Db(modΛ) = {i⊕ j | 0 < j − i ≡ 1 (mod 3)}.

We already know the following triangulated categories without a silting object.

Example 4. [1, Example 2.5]

(1) The bounded derived category Db(modΛ) has a silting object if and only if Λ is
of finite global dimension. In particular, if Λ has infinite global dimension, then
the bounded derived category does not contain a silting object.

(2) Let Λ be a non-semisimple selfinjective algebra. Then no silting object belongs to
the singularity category Dsg(Λ) of Λ.

Our main theorem gives a slight generalization of Example 4 (2).

1.2. Silting reduction. To prove Theorem 1, silting reduction plays a crucial role, which
had been introduced in [1] and was developed in [4].

In this subsection, fix a presilting object T of T . We define a subset siltT T of silt T by

siltT T := {P ∈ silt T | T is a direct summand of P}.
Moreover, one puts S := thickT . The Verdier quotient of T by S is written as T /S.

Then, silting reduction [4, Theorem 3.7] says:

Theorem 5. The canonical functor T → T /S gives rise to a bijection siltT T → silt T /S
if any object X of T satisfies HomT (X,T [ℓ]) = 0 = HomT (T,X[ℓ]) for ℓ ≫ 0.

The assumption of this theorem is satisfied when T contains a silting object; see [1,
Proposition 2.4] and for example consider T = Kb(projΛ).

2. Proof and corollary of Theorem 1

We are now ready to show our main theorem.

Proof of Theorem 1. We will apply silting reduction to T = Db(modΛ) and T = Λ.
We check that the conditions HomT (X,Λ[ℓ]) = 0 = HomT (Λ, X[ℓ]) are satisfied. The

second equality holds evidently. We obtain also the first equality, since the injective
dimension of ΛΛ is finite by our assumption.

Now, we apply silting reduction. As S = thickΛ = Kb(projΛ), it is seen that the
Verdier quotient T /S is just the singularity category Dsg(Λ) of Λ. By Theorem 5, we
have a bijection siltΛ D

b(modΛ) → silt Dsg(Λ), whence it follows from Example 4 (1) that
Dsg(Λ) has no non-zero silting object. □
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We say that Λ is Iwanaga-Gorenstein if it has finite right and left selfinjective dimension.
Then, as is well-known, the full subcategory

CMΛ := {M ∈ modΛ | ExtiΛ(M,Λ) = 0 for any i > 0}
of modΛ is Frobenius, and hense its stable category CMΛ is triangulated [3]. Thanks to
Buchweitz’s theorem [2], we have a triangle equivalence Dsg(Λ) → CMΛ.

Thus, the following corollary is an immediate consequence of Theorem 1.

Corollary 6. The stable category CMΛ has no non-zero silting object if Λ is Iwanaga-
Gorenstein.
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