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Abstract. We give a classification of all exact structures on a given additive cate-
gory. Using this, we investigate the structure of an exact category with finitely many
indecomposables. As an application of this, we give an explicit classification of Cohen-
Macaulay-finite Iwanaga-Gorenstein algebras.

1. Introduction

Exact categories, in the sense of Quillen, have been playing an important role in the rep-
resentation theory of algebras. In general, an additive category has many exact structures.
Recently, Rump [9] showed that every additive category has the largest exact structures,
but no general description of exact structures was known. We give an explicit description
of all exact structures on a given additive category E by using particular modules over E .

Apart from the purely theoretical interest, another motivation for classifying exact
structures comes from the “relative representation theory” of algebras, such as the Cohen-
Macaulay representation theory. First, let k be a field and consider the “absolute” repre-
sentation theory of finite-dimensional k-algebras, which investigates the category modΛ
of finitely generated Λ-modules. An algebra is representation-finite if there exists only
finitely many indecomposable objects in modΛ up to isomorphism. As for such algebras,
there are bijections between the following classes, called an Auslander correspondence.

(1) Representation-finite finite-dimensional k-algebras Λ.
(2) Abelian Hom-finite k-categories E with finitely many indecomposables.
(3) Finite-dimensional k-algebras Γ satisfying gl.dimΓ ≤ 2 ≤ dom.dimΓ.

The map from (1) to (2) is given by Λ 7→ modΛ, and from (3) to (2) by Γ 7→ projΓ.
Actually, the bijection between (2) and (3) is induced from the bijection between:

(2)′ Hom-finite Krull-Schmidt k-categories E with finitely many indecomposables.
(3)′ Finite-dimensional k-algebras Γ.

We call the algebra Γ in corresponding to E under the above bijection an Auslander algebra
for E . Under the bijection between (2)′ and (3)′, it is natural to guess that categorical
properties of E and the homological property of Γ are related. In this viewpoint, the
Auslander correspondence can be interpreted as saying that the abelianness of E can be
characterized by the purely homological behavior of its Auslander algebra.

Now let us move to the relative situation. For a given algebra Λ, in addition to the
module category modΛ, there are several important subcategories of it which have been
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investigated, e.g. the category CMΛ of Cohen-Macaulay Λ-modules. Usually, these “rel-
ative representation categories” are extension-closed in modΛ, thus naturally has the
structure of an exact category. The main motivating question in our study is whether
there exists a bijection between the following:

(1) Relative representation-finite algebras Λ.
(2) Hom-finite Krull-Schmidt k-categories E with finitely many indecomposables which

satisfy some categorical properties.
(3) Finite-dimensional k-algebras satisfying some homological properties.

Here we fix some relative theory, and an algebra is relative representation-finite if its
relative representation category has finitely many indecomposables. The maps are defined
(if possible) as follows: For Λ in (1), we define E in (2) to be the relative representation
category of Λ, and the map between (2) and (3) is a restriction of (2)′ and (3)′ above.
Actually several bijections of this type are known, e.g. for one-dimensional orders [1],
1-cotilting modules and 1-Iwanaga-Gorenstein algebras [7].

In general, however, it often happens that the map from (1) to (2) is not injective. For
example, there exist non-Morita-equivalent Iwanaga-Gorenstein algebras Λ and Λ′ such
that CMΛ and CMΛ′ are equivalent. The problem is that the algebra Λ cannot be recov-
ered from the additive structure of the representation category like CMΛ. Nevertheless,
we can usually recover Λ from the representation category of Λ together with the exact
structure on it. Therefore, by using exact structures, we should modify and divide the
question into the following.

(A) Construct a bijection between the “exact version” of (1) and (2), that is, charac-
terize exact categories which are exact-equivalent to the representation category.

(B) Construct a bijection between the “exact version ” of (2)′ and (3)′, that is, classify
the exact structure on a given category in terms of its Auslander algebra.

Problem (A) is something like an Morita-type theory of exact categories, and was tackled
with in [5]. In this article, we focus on Problem (B).

Remark 1. Although we concentrate on categories of finite type in this article, the com-
pletely similar argument works for general idempotent complete additive categories by
using functor categorical method, except arguments about 2-regular simples. We refer
the interested reader to [6] for details.

1.1. Convention. For simplicity, throughout this article, we fix a field k. All algebras
are finite-dimensional k-algebras. All categories are skeletally small Hom-finite Krull-
Schmidt k-categories, and all subcategories are assumed to be full, additive and closed
under direct summands.

For an algebra Λ, we denote by modΛ (resp. projΛ) the category of finitely generated
right Λ-modules (resp. finitely generated projective right Λ-modules).

For an object G in a category E , we denote by addG the subcategory of E consisting
of direct summands of finite direct sums of G. A category E is called of finite type if E
has only finitely many indecomposable objects up to isomorphism, or equivalently, there
exists G ∈ E such that E = addG. In this case such an object G is called an additive
generator of E .
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2. Preliminaries on exact categories and Auslander algebras

We fix some terminology and recall basic properties of exact categories and auslander
algebras. We refer the reader to [4] for the basics of exact categories.

Let E be an additive category. A complex X
f−→ Y

g−→ Z in E is a kernel-cokernel pair
if f is a kernel of g and g is a cokernel of f . An exact category is a pair (E , F ) consisting
of an additive category E and a class F of kernel-cokernel pairs in E which satisfy some
conditions (see [4]). In this case, we say that F is an exact structure for E , and a complex
in F is called a conflation.

Example 2. Let Λ be an algebra and E a subcategory of modΛ. If E is closed under
extensions, then E has the natural exact structure, whose conflations are short exact
sequences in modΛ with all terms in E .

As we mentioned in the introduction, categories of finite type are just finite-dimensional
algebras, seen from another perspective:

Proposition 3. There exists a bijection between the following classes.

(1) Equivalence classes of Hom-finite Krull-Schmidt categories E of finite type.
(2) Morita-equivalence classes of finite-dimensional k-algebras Γ.

The map from (1) to (2) is given by Γ := EndE(G), where G is an additive generator of
E, and from (2) to (1) by E := projΓ.

In what follows, Assumption (∗) means that E is of finite type, G is an additive gen-
erator of E and Γ := EndE(G). Our aim is to translate the information of exact structures
on E into the homological behavior of Γ. To this purpose, the following equivalence called
Auslander’s projectivization plays an important role.

Lemma 4. Assume (∗). Then we have the following equivalence and duality:

(1) P(−) := E(G,−) : E ≃ projΓ.

(2) P (−) := E(−, G) : E ≃ projΓop.

Moreover these satisfies HomΓ(P(−),Γ) ≃ P (−).

Since an exact structure on E is a class of kernel-cokernel pairs in E , let us investigate
kernel-cokernel pairs in E in terms of Γ.

Proposition 5. Assume (∗). Let X
f−→ Y

g−→ Z be a complex in E and put M :=
coker(Pg) ∈ modΓ.

(1) f is a kernel of g if and only if the following is exact in modΓ. Thus pdMΓ ≤ 2.

0 → PX

Pf−→ PY
Pg−→ PZ → M → 0

(2) Suppose (1). Then (f, g) is a kernel-cokernel pair if and only if Ext0,1Γ (M,Γ) = 0.

Proof. We give a sketch of the proof. (1) is immediate from the definition of kernels in an

additive category. By duality, g is a cokernel of f if and only if 0 → PZ P g

−→ P Y P f

−→ PX

is exact. Since P (−) ≃ HomΓ(P(−),Γ) and we are assuming (1), this is equivalent to

Ext0,1Γ (M,Γ) = 0. □
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As can be inferred from this, the following category will play a crucial role.

Definition 6. Let Γ be an algebra. A subcategory C2(Γ) of modΓ consists of modules
M satisfying pdMΓ ≤ 2 and Ext0,1Γ (M,Γ) = 0.

Under assumption (∗), each object in C2(Γ) corresponds to a kernel-cokernel pair in E .
Therefore, it is natural to guess that exact structures on E correspond to a somewhat nice
subcategories of C2(Γ).

3. Main Results

Let Γ be an algebra. Recall that a subcategory D of modΓ is called Serre if it is closed
under extensions, submodules and quotients. Now we state the main result of this article.

Theorem 7. Assume (∗). Then there exists a bijection between the following:

(1) Exact structures F on E.
(2) Subcategories D of C2(Γ) satisfying the following conditions.

(a) D is Serre in modΓ.
(b) Ext2Γ(D,Γ) is Serre in modΓop.

More precisely, suppose that F and D correspond to each other.

• M ∈ modΓ belongs to D if and only if there is a conflation X
f−→ Y

g−→ Z in F
such that M ∼= cokerPg.

• A complex X
f−→ Y

g−→ Z in E belongs to F if and only if 0 → PX

Pf−→ PY
Pg−→ PZ →

M → 0 is exact for M ∈ D.

Since Serre subcategories of modΓ are uniquely determined by sets of simple Γ-modules,
we can describe exact structures more explicitly. Here the following notion is essential,
which is similar to the behavior of the simple over 2-dimensional regular local ring.

Definition 8. Let Γ be an algebra. A simple Γ-module S is called 2-regular if it satisfies
the following two conditions.

(1) S ∈ C2(Γ), that is, pdSΓ = 2 and Ext0,1Γ (S,Γ) = 0.
(2) Ext2Γ(S,Γ) is a simple Γop-modules.

Assume (∗). As in the classical (functorial) Auslander-Reiten theory, 2-regular simple
modules correspond to almost split kernel-cokernel pairs in E . In order to help understand
2-regular simples visually, let us introduce the translation quiver Q(E). The underlying
quiver of Q(E) is nothing but the usual quiver of E , that is, vertices of Q(E) are isomor-
phism classes of indecomposable objects in E , and arrows are drawn depending on spaces
of irreducible maps between objects in E . Next we draw a dotted arrow X L99 Z if there
exists an almost split kernel-cokernel pairs X → Y → Z in E . This happens precisely
when the simple quotient SZ of PZ is a 2-regular simple Γ-module and Ext2Γ(SZ ,Γ) is the
simple quotient of PX .

By investigating simple modules corresponding to a Serre subcategory D of modΓ in
Theorem 7(2), we obtain the following description.

Theorem 9. Assume (∗). Then we can add the following to Theorem 7.

(3) Sets S of 2-regular simple Γ-modules.
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(4) Sets A of dotted arrows in Q(E)(= Q(projΓ)).

Remark 10. Assume (∗) and suppose that E has an exact structure corresponding to A
in Theorem 9(4). Then a kernel-cokernel pair X → Y → Z in E which corresponds to a
dotted arrow X L99 Z in A is nothing but an almost split conflation of E . Furthermore,
an indecomposable object X is projective (resp. injective) in the exact category E if and
only if there exists no dotted arrow in A starting at (resp. ending at) X.

Example 11. Let Λ be a representation-finite algebra and E := modΛ. Then the algebra
Γ corresponding to E is nothing but the classical Auslander algebra for Λ. The translation
quiver Q(E) is the same is the usual Auslander-Reiten quiver of modΛ. Theorem 9
amounts to say that exact structures on E are parametrized by (basic) generators, by
taking the direct sum of projective objects. This was proved in [3], and actually it is one
of the motivations of this study to generalize it.

4. Applications

Now we apply our results to the relative representation theory.

Definition 12. Let Λ be an algebra.

(1) Λ is called an Iwanaga-Gorenstein if both idΛΛ and id ΛΛ are finite.
(2) A module M ∈ modΛ over an Iwanaga-Gorenstein algebra Λ is called Cohen-

Macaulay if Ext>0
Λ (M,Λ) = 0. We denote by CMΛ the category of Cohen-

Macaulay Λ-modules.
(3) An Iwanaga-Gorenstein algebra Λ is CM-finite if CMΛ is of finite type.

Example 13. Typical examples of CM-finite Iwanaga-Gorenstein algebras are the fol-
lowing.

• A representation-finite self-injective algebra Λ. In this case, CMΛ = modΛ holds.
• An algebra Λ with finite global dimension. In this case, CMΛ = projΛ holds.

Note that CMΛ is closed under extensions in modΛ, thus has the natural exact struc-
ture. Concerning Problem (A) in the introduction, we have the following result.

Theorem 14. Assume (∗) and suppose that E is an exact category. Then the following
are equivalent.

(1) There exists an Iwanaga-Gorenstein algebras Λ(which is automatically CM-finite)
such that E is exact-equivalent to CMΛ.

(2) Γ has finite global dimension, and the classes of projective and injective objects in
E coincide.

Combining this with Theorem 9, we immediately obtain the following classification
result.

Corollary 15. There exists a bijection between the following:

(1) Morita-equivalence classes of CM-finite Iwanaga-Gorenstein algebras Λ.
(2) Equivalence classes of pairs (Γ,A), where Γ is an algebra with finite global dimen-

sion, and A is a set of dotted arrows in Q(projΓ) which is a union of oriented
cycles.

–5–



For (Γ,A) in (2), the corresponding algebra Λ is obtained by taking the endomorphism
ring of the direct sum of modules not lying in A. In this case, CMΛ ≃ projΓ holds.

In this theorem, roughly speaking, Γ parametrizes all possible CM categories E , and
for each Γ, A parametrizes all Iwanaga-Gorenstein algebras whose CM category is E .
Remark 16. Actually, Corollary 15 is a special version of the result about cotilting Λ-
modules U such that its Ext-perpendicular category ⊥U is of finite type, see [6]. In this
case, we consider the pair (Λ, U) in (1) and the restriction of A in (2) is dropped.

Example 17. Put Λ := k[X]/(X4) and E := modΛ. It is well-known that Λ is representation-
finite, thus E is of finite type and the corresponding Γ is the classical Auslander algebra
of Λ. Then Q(E) looks like

1 ⇆ 2 ⇆ 3 ⇆ 4

together with three dotted loops starting at 1, 2 and 3. Then there exists 23 = 8 choices
of A satisfying Corollary 15 since every set of dotted arrows are allowed. The resulting
eight Iwanaga-Gorenstein algebras are all the Iwanaga-Gorenstein algebras such that their
CM category is equivalent to E . All of this are 2-Iwanaga-Gorenstein. More generally,
starting from representation-finite algebra Λ, this procedure yields CM-finite 2-Iwanaga-
Gorenstein algebras. This process is the same as τ -selfinjective algebras in [2], or 0-
precluster-tilted algebras in [8].

Corollary 15 actually gives somewhat computable algorithm to produce CM-finite
Iwanaga-Gorenstein algebras. More precisely, all CM-finite Iwanaga-Gorenstein algebras
Λ are obtained by the following steps.

(1) Take an algebra Γ with finite global dimension.
(2) Compute Q(projΓ)
(3) For each cyclic orbit A of Q(projΓ), compute the endomorphism ring Λ of vertices

not lying on A.
Moreover, Corollary 15 seems to be the best possible classification of CM-finite Iwanaga-

Gorenstein algebras by the following reason: If an algebra Λ has finite global dimension,
then Λ is Iwanaga-Gorenstein with CMΛ = projΛ, hence is CM-finite. Therefore the
complete classification of CM-finite Iwanaga-Gorenstein algebras, if exists, should contain
that of algebras with finite global dimension, which is unlikely to be settled without
any further restriction. Corollary 15 decomposes the classification problem of CM-finite
algebras into (1) that of algebras with finite global dimension and (2) the computation of
the translation quiver associated with the algebra.

However, there are several problems on Corollary 15. One of those is that, for a
given algebra Γ, there seems to be no systematic algorithm to draw Q(projΓ), without
calculating explicitly by hand. For actual computation, we first should chose algebras
with finite global dimension, but there are too many and it is not clear which classes of
such algebras are suitable for computation.

One of the candidates is the class of strict τ -algebra introduced in [7], which is an
Auslander algebra of torsion classes of finite type. Purely combinatorial conditions on
the translation quiver Q are known such that its mesh algebra Γ := k(Q) yields a strict
τ -algebra, and in this case Q(projΓ) = Q holds. Thus we do not have to compute the
translation quiver Q(projΓ) if we start from Q.
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