INFINITE SEQUENCES OF FROBENIUS EXTENSIONS

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

ABSTRACT. In this talk, to each Frobenius extension of first kind A/R we associate a sequence of ring extensions $A_0 = R \subset A_1 = A \subset \cdots \subset A_n \subset \cdots$ such that each A_{i+1}/A_i is a Frobenius exteinsion of first kind.

INTRODUCTION

In this talk, to each Frobenius extension of first kind A/R we associate a sequence of ring extensions

 $A_0 = R \subset A_1 = A \subset \cdots \subset A_n \subset \cdots$

such that each A_{i+1}/A_i is a Frobenius exteinsion of first kind.

An important thing on Frobenius extensions is that Frobenius extensions of Auslander-Gorenstein rings are Auslander-Gorenstein. It should be noted that Auslander-Gorenstein rings appear in various fields of current research in mathematics.

1. Preliminaries

Throughout the rest of this talk, R stands for an arbitrary ring.

We recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku [4, 5], which we modify as follows (cf. [1, 3]).

Definition 1 ([3]). A ring A is said to be an extension of R if A contains R as a subring, and the notation A/R is used to denote that A is an extension ring of R. A ring extension A/R is said to be Frobenius if the following conditions are satisfied:

(F1) A is finitely generated as a left R-module;

(F2) A is finitely generated projective as a right R-module;

(F3) $A \cong \operatorname{Hom}_R(A, R)$ as right A-modules.

We refer to [2] for the definition of Auslander-Gorenstein rings.

Proposition 2 ([3, Proposition 1.9]). For any Frobenius extension A/R, if R is an Auslander-Gorenstein ring, then so is A with inj dim $A \leq inj \dim R$.

2. Main results

We deal with Frobenius extensions of first kind and state the main results.

Definition 3 (cf. [4, 5]). A Frobenius extension A/R is said to be of first kind if $A \cong \text{Hom}_R(A, R)$ as *R*-*A*-bimodules.

The detailed version of this paper will be submitted for publication elsewhere.

Theorem 4. Let P be a finitely generated projective right R-module and $Q = \text{Hom}_R(P, R)$. Put $\Lambda = \text{End}_R(P)$. Assume that there exists a subring $A \subset \Lambda$ satisfying the following conditions:

- (1) Q is finitely generated projective as a right A-module;
- (2) $P \cong \operatorname{Hom}_A(Q, A)$ as A-R-bimodules.

Then Λ/A is a Frobenius extension of first kind.

Theorem 5. For any Frobenius extension of first kind A/R there exists a sequence of ring extensions

 $A_0 = R \subset A_1 = A \subset \cdots \subset A_{n+1} = \operatorname{End}_{A_{n-1}}(A_n) \subset \cdots$

such that A_{i+1}/A_i is a Frobenius extension of first kind for all $i \geq 0$.

References

- H. Abe and M. Hoshino, Frobenius extensions and tilting complexes, Algebras and Representation Theory 11(3) (2008), 215–232.
- [2] J. -E. Björk, The Auslander condition on noetherian rings, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 137-173, Lecture Notes in Math., 1404, Springer, Berlin, 1989.
- [3] M. Hoshino, N. Kameyama and H. Koga, Clifford extensions, Comm. Algebra 44 (2016), no. 4, 1695–1703.
- [4] T. Nakayama and T. Tsuzuku, On Frobenius extensions I, Nagoya Math. J. 17 (1960), 89–110.
- [5] T. Nakayama and T. Tsuzuku, On Frobenius extensions II, Nagoya Math. J. 19 (1961), 127–148.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI, 305-8571, JAPAN *E-mail address*: hoshino@math.tsukuba.ac.jp

DEPARTMENT OF GENERAL EDUCATION SALESIAN POLYTECHNIC TOKYO, 194-0212, JAPAN *E-mail address*: n-kameyama@salesio-sp.ac.jp

DEPARTMENT OF MATHEMATICS TOKYO DENKI UNIVERSITY TOKYO, 120-8551, JAPAN *E-mail address*: koga@mail.dendai.ac.jp