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Abstract. In this talk, to each Frobenius extension of first kind A/R we associate a
sequence of ring extensions A0 = R ⊂ A1 = A ⊂ · · · ⊂ An ⊂ · · · such that each Ai+1/Ai

is a Frobenius exteinsion of first kind.

Introduction

In this talk, to each Frobenius extension of first kind A/R we associate a sequence of
ring extensions

A0 = R ⊂ A1 = A ⊂ · · · ⊂ An ⊂ · · ·
such that each Ai+1/Ai is a Frobenius exteinsion of first kind.

An important thing on Frobenius extensions is that Frobenius extensions of Auslander-
Gorenstein rings are Auslander-Gorenstein. It should be noted that Auslander-Gorenstein
rings appear in various fields of current research in mathematics.

1. Preliminaries

Throughout the rest of this talk, R stands for an arbitrary ring.
We recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku

[4, 5], which we modify as follows (cf. [1, 3]).

Definition 1 ([3]). A ring A is said to be an extension of R if A contains R as a subring,
and the notation A/R is used to denote that A is an extension ring of R. A ring extension
A/R is said to be Frobenius if the following conditions are satisfied:

(F1) A is finitely generated as a left R-module;
(F2) A is finitely generated projective as a right R-module;
(F3) A ∼= HomR(A,R) as right A-modules.

We refer to [2] for the definition of Auslander-Gorenstein rings.

Proposition 2 ([3, Proposition 1.9]). For any Frobenius extension A/R, if R is an
Auslander-Gorenstein ring, then so is A with inj dim A ≤ inj dim R.

2. Main results

We deal with Frobenius extensions of first kind and state the main results.

Definition 3 (cf. [4, 5]). A Frobenius extension A/R is said to be of first kind if A ∼=
HomR(A,R) as R-A-bimodules.
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Theorem 4. Let P be a finitely generated projective right R-module and Q = HomR(P,R).
Put Λ = EndR(P ). Assume that there exists a subring A ⊂ Λ satisfying the following con-
ditions:

(1) Q is finitely generated projective as a right A-module;
(2) P ∼= HomA(Q,A) as A-R-bimodules.

Then Λ/A is a Frobenius extension of first kind.

Theorem 5. For any Frobenius extension of first kind A/R there exists a sequence of
ring extensions

A0 = R ⊂ A1 = A ⊂ · · · ⊂ An+1 = EndAn−1(An) ⊂ · · ·
such that Ai+1/Ai is a Frobenius extension of first kind for all i ≥ 0.
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