SYMMETRIC HOCHSCHILD EXTENSION ALGEBRAS AND NORMALIZED 2-COCYCLES

TOMOHIRO ITAGAKI

ABSTRACT. For finite dimensional, basic and connected algebras over a field, we give a sufficient condition, related to 2-cocycles, for Hochschild extension algebras to be symmetric. For bound quiver algebras and arbitrary 2-cocycles we define the normalized 2-cocycle associated with a complete set of orthogonal idempotents, and we show that for every 2-cocycle there exists a normalized 2-cocycle such that their cohomology classes coincide.

1. INTRODUCTION

Hochschild extensions of algebras give many self-injective algebras. For a finite dimensional algebra A over a field K, the trivial extension algebra $T(A) := A \ltimes \operatorname{Hom}_K(A, K)$ of a K-algebra A by the standard duality module $\operatorname{Hom}_K(A, K)$ is very important in the representation theory of self-injective algebras. This is also one of the Hochschild extension algebras of A. In particular, trivial extension algebras correspond to the zero cocycle in the second Hochschild cohomology groups $\operatorname{H}^2(A, \operatorname{Hom}_K(A, K))$. It is well known that the trivial extension algebra T(A) of K-algebra A is symmetric by the symmetric regular K-linear map $\mu : T(A) \to K, \mu(a, f) = f(1)$, where $a \in A$ and $f \in \operatorname{Hom}_K(A, K)$. However, it is known that Hochschild extension algebras by duality bimodules are always self-injective [2] but they are not symmetric in general [1].

This paper has two aims:

- (1) We will give a sufficient condition, related to 2-cocycles, for Hochschild extension algebras to be symmetric.
- (2) For any 2-cocycle α we define normalized 2-cocycles related to a complete set of primitive orthogonal idempotents and construct a 2-cocycle whose cohomology class coincides with the cohomology class of α .

2. Symmetric Hochschild extension algebras

Let K be a field and A a finite dimensional K-algebra. In this section, we recall the definition, the notation and several properties of Hochschild extensions of a K-algebra A by a duality bimodule and we give a sufficient condition related 2-cocycles for Hochschild extension algebras to be symmetric.

Let D be a duality between A-mod and A^{op} -mod. Then, there is an A-bimodule M such that $D \cong \text{Hom}_A(-, M)$. In particular, $M \cong DA$ as A-bimodules. Such a module DA is called a duality module. An extension of an algebra A is an epimorphism $\rho: T \to A$ of

The detailed version of this paper will be submitted for publication elsewhere.

The author was supported by JSPS Grant-in-Aid for Young Scientists (B) 17K14175.

K-algebra. An extension of an algebra A with kernel DA is called a *Hochschild extension* of A by duality module DA if the kernel of ρ is isomorphic to a duality module DA as T-bimodule, that is, there exists an exact sequence $0 \to DA \to T \xrightarrow{\rho} A \to 0$. Then, T is called a *Hochschild extension algebra* of A by DA.

The Hochschild extension algebra T is defined by a 2-cocycle. A 2-cocycle $\alpha : A \times A \rightarrow$ is a K-bilinear map with the 2-cocycle condition

$$(a, b, c)_{\alpha} := a\alpha(b, c) - \alpha(ab, c) + \alpha(a, bc) - \alpha(a, b)c = 0$$

for $a, b, c \in A$. The Hochschild extension algebra $T \cong A \oplus DA$ as K-modules and the multiplication is defined by

$$(a, f)(b, g) = (ab, ag + fb + \alpha(a, b))$$

for $a, b \in A$ and $f, g \in \text{Hom}_K(A, DA)$. We denote such a Hochschild extension algebra T by $T_{\alpha}(A, DA)$. In particular, the trivial extension of A by DA is the Hochschild extension $T_0(A, DA)$ of A by DA for zero-map.

Hochschild extension algebras of A are related to the second Hochschild cohomology $H^2(A, DA)$ of A with coefficient in DA, which is the cohomology of the complex

$$\operatorname{Hom}_{K}(A, DA) \xrightarrow{\delta^{1}} \operatorname{Hom}_{K}(A^{\otimes 2}, DA) \xrightarrow{\delta^{2}} \operatorname{Hom}_{K}(A^{\otimes 3}, DA),$$

where δ^1 and δ^2 are given by

$$\begin{aligned} &[\delta^1(f)](a\otimes b) = af(b) - f(ab) + f(a)b\\ &[\delta^2(\alpha)](a\otimes b\otimes c) = a\alpha(b\otimes c) - \alpha(ab\otimes c) + \alpha(a\otimes bc) - \alpha(a\otimes b)c \end{aligned}$$

for $a, b, c \in A$, $f \in \operatorname{Hom}_{K}(A, DA)$ and $\alpha \in \operatorname{Hom}_{K}(A^{\otimes 2}, DA)$. Hochschild extensions $(T): 0 \to DA \to T \to A \to 0$ and $(T'): 0 \to DA \to T' \to A \to 0$ are called equivalent if there exists a homomorphism $\iota: T \to T'$ as K-algebras such that the following diagram commute:

$$0 \longrightarrow DA \longrightarrow T \longrightarrow A \longrightarrow 0$$
$$\downarrow_{1} \qquad \qquad \downarrow_{\iota} \qquad \qquad \downarrow_{1} \\0 \longrightarrow DA \longrightarrow T' \longrightarrow A \longrightarrow 0$$

In particular, if Hochschild extension algebras T, T' are equivalent, then $T \cong T'$ as K-algebras. It is well known that there exists a one-to-one correspondence between the set of all equivalent classes of Hochschild extensions of A by DA and $H^2(A, DA)$.

The K-linear map $\alpha : A^{\otimes 2} \to DA$ which belongs to $Z^2(A, DA)$ is induced by a 2cocycle, so we also call the K-linear map α 2-cocycle if there is no confusion. For $f \in$ $\operatorname{Hom}_K(A, DA)$ we define a 2-cocycle $\delta(f)$ by

$$[\delta(f)](a,b) = af(b) - f(ab) + f(a)b.$$

Then for a 2-cocycle $\alpha : A \times A \to DA$, for any $f \in \operatorname{Hom}_K(A, DA)$ the Hochschild extension of A by DA for α and the one for $\alpha - \delta(f)$ are equivalent. In particular, their Hochschild extension algebras are isomorphic.

Let Q be a finite quiver and A = KQ/I, where I is an admissible ideal. We denote by Q_0 and Q_1 the set of all vertices in Q, the set of all arrows in Q, respectively. Let $Q_0 = \{1, 2, ..., n\}$ and e_i the primitive idempotent corresponding to $i \in Q_0$. Then it is well known that $\{e_i \mid i \in Q_0\}$ is a complete set of primitive orthogonal idempotents of A. For a nonzero element $a \in A$, with $a = e_i a e_j$ for some i, j, we denote e_i and e_j by s(a) and t(a), respectively. For a path p in KQ we denote by p again the image of p under the canonical map $KQ \to A$ if there is no confusion.

Let K be a field and A = KQ/I a bound quiver algebra. The algebra A is called symmetric if A is isomorphic to $\operatorname{Hom}_K(A, K)$ as A-bimodules or, equivalently, there exists a K-bilinear map $\mu : A \to K$ such that the following holds:

(S1) μ is regular, that is, $\mu(Ax) \neq 0$ for any $x \in A$.

(S2) μ is symmetric, that is, $\mu(xy) = \mu(yx)$ for any $x, y \in A$.

In [2], it is showed that every Hochschild extension algebra T of A by duality module DA is self-injective. In particular, the Nakayama permutation of T and the Nakayama permutation by ${}_{A}(DA)_{A}$ coincide. However, Hochschild extension algebras are not symmetric in general. It is shown that there is a Hochschild extension algebra which is symmetric if and only if $DA \cong \operatorname{Hom}_{K}(A, K)$ by [3, Proposition 2.2]. Thus, we denote by DA the standard duality module $\operatorname{Hom}_{K}(A, K)$ again. In particular, Hochschild extension algebras permutations are identity.

In order to describe our assertion, we explain some notation. For a 2-cocycle $\alpha : A \times A \rightarrow DA$, we denote by η_{α} a K-bilinear map $A \times A \rightarrow DA$ given by $\eta_{\alpha}(x, y) = \alpha(x, y) - \alpha(y, x)$, where $x, y \in A$. Let $V_{\alpha} = \{a \in \mathbb{Z}(A) \mid f(a) = 0 \text{ for any } f \in \eta_{\alpha}(A \times A)\}.$

Theorem 1. If there exists $x_0 \in V_\alpha$ such that $e_i^*(x_0) \neq 0$ for all $i(1 \leq i \leq n)$, then the Hochschild extension algebra $T_\alpha(A, DA)$ of A defined by α is symmetric.

Example 2 ([1]). Let Q be a quiver with a vertice and three loops x, y, z. Let $A = KQ/R_Q^2$, $\mathcal{B} = \{1, x, y, z\}$ a basis of A and $\alpha : A \times A \to DA$ a 2-cocycle given by $\alpha(x, y) = 1^* - z^*$, $\alpha(y, z) = 1^* - x^*$, $\alpha(z, x) = 1^* - y^*$, $\alpha(a, b) = 0$ for $(a, b) \in \mathcal{B} \times \mathcal{B} \setminus \{(x, y), (y, z), (z, x)\}$, where R_Q is the arrow ideal of KQ. Then, by direct computation, we have $V_\alpha = \langle 1 + x + y + z \rangle_K$. Since $1^*(1 + x + y + z) = 1$, the Hochschild extension algebra $T_\alpha(A, DA)$ of A by DA for α is symmetric by Theorem 1.

3. Normalized 2-cocycles and their applications

Let A be a basic Artin algebra over a commutative Artin ring $K, E = \{e_1, e_2, \ldots, e_n\}$ a complete set of primitive orthogonal idempotents of A, M an A-bimodule and α : $A \times A \to M$ a 2-cocycle. If α satisfies that $\alpha(1, a) = \alpha(a, 1) = 0$ for all $a \in A$, then α is called a *normalized* 2-cocycle. Moreover, for every 2-cocycle $\alpha, \alpha - \delta f_{\alpha}$ is a normalized 2-cocycle whose cohomology class coincides the cohomology class of α , where f_{α} is given by $f_{\alpha}(a) = \alpha(a, 1)$ for $a \in A$.

In this section, we define E-normalized 2-cocycles and we show that for every 2-cocycle there exists an E-normalized 2-cocycle such that their cohomology class coincide. By means of that construction of E-normalized 2-cocycles, for bound quiver algebras we prove a result by Ohnuki, Takeda and Yamagata in [1] as a corollary of Theorem 1.

Definition 3. Let A be a basic Artin algebra over a commutative Artin ring K, $E = \{e_1, e_2, \ldots, e_n\}$ a complete set of primitive orthogonal idempotents of A, M an A-bimodule and $\alpha : A \times A \to M$ a 2-cocycle. If α satisfies $\alpha(e_i, A) = \alpha(A, e_i) = 0$ for all $e_i \in E$, then α is called an *E*-normalized 2-cocycle.

Remark 4. If α is an *E*-normalized 2-cocycle, then α is a normalized 2-cocycle.

From now on, for every 2-cocycle α we will construct an *E*-normalized 2-cocycle whose cohomology class coincides with the cohomology class of α .

We will define some notation. For a 2-cocycle $\alpha : A \times A \to M$, we define $h_{\mathrm{R}}(\alpha) \in \mathrm{Hom}_{K}(A, M)$ by $[h_{\mathrm{R}}(\alpha)](a) = \sum_{k=1}^{n} \alpha(a, e_{k})e_{k}$ for $a \in A$. Similarly, we define $h_{\mathrm{L}}(\alpha) \in \mathrm{Hom}_{K}(A, M)$ by $[h_{\mathrm{L}}(\alpha)](a) = \sum_{k=1}^{n} e_{k}\alpha(e_{k}, a)$ for $a \in A$. Moreover, we put $H_{\mathrm{R}}(\alpha) = \alpha - \delta(h_{\mathrm{R}}(\alpha))$ and $H_{\mathrm{L}}(\alpha) = \alpha - \delta(h_{\mathrm{L}}(\alpha))$ which belong to $\mathbb{Z}^{2}(A, M)$.

Proposition 5. The following statements hold:

(1) $[H_{\rm R}(\alpha)](A, e_i) = 0$ for every $i(1 \le i \le n)$. (2) $[H_{\rm L}(\alpha)](e_i, A) = 0$ for every $i(1 \le i \le n)$. (3) $H_{\rm R}^2(\alpha) = H_{\rm R}(\alpha)$. (4) $H_{\rm L}^2(\alpha) = H_{\rm L}(\alpha)$. (5) $H_{\rm L}H_{\rm R}(\alpha) = H_{\rm R}H_{\rm L}(\alpha)$.

By Proposition 5, we put $\overline{\alpha} = H_{\rm L}H_{\rm R}(\alpha) \in Z^2(A, DA)$ for every 2-cocycle α . Then, by direct computation, we have the following properties.

Proposition 6. For a 2-cocycle $\alpha : A \times A \to M$, the 2-cocycle $\overline{\alpha}$ satisfies the following:

(1) The cohomology class $[\overline{\alpha}]$ of $\overline{\alpha}$ coincides with the cohomology class $[\alpha]$ of α .

(2) The 2-cocycle $\overline{\alpha}$ is an E-normalized 2-cocycle.

(3) If A is a bound quiver algebra KQ/I over a field K, then

$$\overline{\alpha}(p,q) = \begin{cases} s(p)\alpha(p,q)t(q) - p\alpha(t(p),s(q))q & \text{if } pq \neq 0 \text{ in } KQ \\ 0 & \text{if } pq = 0 \text{ in } KQ \end{cases}$$

for all paths p, q in Q.

As a corollary of Theorem 1, we have [1, Theorem 2.2] by means of the *E*-normalized 2-cocycles.

Corollary 7 ([1, Theorem 2.2]). Let Q be a finite quiver, A = KQ/I a bound quiver algebra and $\alpha : A \times A \to DA$ a 2-cocycle. If α satisfies $\alpha(p,q)(t(q)) = \alpha(q,p)(t(p))$ for all paths p, q which pq is a cycle in Q and $p, q \notin Q_0$, then the Hochschild extension algebra of A for α is symmetric.

References

- Y. Ohnuki, K. Takeda and K. Yamagata, Symmetric Hochschild extension algebras, Collo. Math 80 (1999), 155–174.
- [2] K. Yamagata, Extensions over hereditary artinian rings with self-dualities, I, J. Algebra 73 (1981), 386-433.
- [3] K. Yamagata, Representations of non-splittable extension algebras, J. Algebra 115 (1988), 32–45.

DEPARTMENT OF MATHEMATICS TOKYO UNIVERSITY OF SCIENCE 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN *E-mail address*: titagaki@rs.tus.ac.jp