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Abstract. In [2], for any ring R, complex rings C(R), quaternion rings H(R) and
octonion rings O(R) are studied. For the real numbers R, H(R) is the Hamilton’s
quaternions and O(R) is the Kelly-Graves’s octonions. In view of progress of quater-

nions, generalized quaternion algebras
(
a,b
F

)
are introduced for commutative fields F and

nonzero elements a, b ∈ F , and these quaternions have been extensively studied as alge-
braic number theory. In this paper, we use H(F ; a, b) instead of

(
a,b
F

)
. For a division ring

D and nonzero elements a, b ∈ Z(D), the center of D, we introduce generalized complex
rings C(D; a) and generalized quaternion rings H(D; a, b), and study the structure of
these rings. We show that these rings are simple rings if the characteristic of D is not
2, that is, 2 ̸= 0, and study the structure of these simple rings. When 2 = 0, these rings
are local quasi-Frobenius rings.

1. Introduction

In 1843 - 1844, Hamilton discovered the quaternions and Kelly, Graves independently
discovered the octonions. These numbers are defined over the real numbers and contain
the complex numbers. Through Frobenius, Wedderburn and Noether, these numbers have
been studied by many mathematicians. We may say that one of the roots of our ring and
representation theory began with these numbers.

In order to define these numbers for any ring R, we consider free right R-modules:

C(R) = e0R⊕ e1R,

H(R) = e0R⊕ e1R⊕ e2R⊕ e3R,

O(R) = e0R⊕ e1R⊕ · · · ⊕ e7R.

We define rei = eir for any r ∈ R and any i (1 ≤ i ≤ 7), and multiplications for {ei}i are
defined by the following Cayley-Graves multiplication table:

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 -e0 e3 -e2 e5 -e4 -e7 e6
e2 e2 -e3 -e0 e1 e6 e7 -e4 -e5
e3 e3 e2 -e1 -e0 e7 -e6 e5 -e4
e4 e4 -e5 -e6 -e7 -e0 e1 e2 e3
e5 e5 e4 -e7 e6 -e1 -e0 -e3 e2
e6 e6 e7 e4 -e5 -e2 e3 -e0 -e1
e7 e7 -e6 e5 e4 -e3 -e2 e1 -e0

The detailed version of this paper will be submitted for publication elsewhere.
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Then C(R) and H(R) are rings, and O(R) is a non-associative ring. We call C(R) a
complex ring, H(R) a quaternion ring and O(R) an octonion ring. For C(R) and H(R),
we put 1 = e0, i = e1, j = e2, k = e3. Then multiplications for {i, j, k} are usual forms:

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

In order to study H(H(R)), we use {i, j,k} instead of {i, j, k}. Namely,

H(R) = R + iR + jR + kR,

H(H(R)) = H(R) + iH(R) + jH(R) + kH(R).

Similarly, for C(H(R)),C(C(R)),H(C(R)), we use {i, j,k}.

In view of progress of quaternion rings, generalized quaternion rings are introduced for
commutative fields and these rings have been well studied. For later use, we introduce
generalized quaternion rings over any ring R.

Let R be a ring and let a, b be non-zero elements ∈ Z(R), the center of R. Consider
the following free right R-modules:

C(D; a) = D ⊕ iD, H(D; a, b) = D ⊕ iD ⊕ jD ⊕ kD.

For these modules and any r ∈ R, we define

ri = ir, rj = jr, rk = kr

and multiplications for {i, j, k} as follows:

i2 = a, j2 = b, ij = −ji = k.

Then we can see the following:

k2 = −ab, ik = −ki = ja, jk = −kj = −ib.

By these multiplications, C(D; a) and H(D; a, b) become rings. In this paper, we say
C(D; a) a generalized complex ring and H(D; a, b) a generalized quaternion ring. For a
commutative field F , H(F ; a, b) is denoted by

(
a,b
F

)
and has been extensively studied in

algebraic number theory.
Our main purpose of this paper is to study the structures of C(D),H(D),C(D; a) and

H(D; a, b) for a given division ring D. By our results, we can see the difference between
H(D; a, b) and H(F ; a, b). For H(F ; a, b), we refer books Lam [4], Nicholson [5], Pierce
[6] and Saito [7].

We use following symbols:
R the real numbers
Q the rational numbers
C the complex numbers
Mn(R) n× n matrix ring over a ring R
J(R) Jacobson radical of R
S(RR) Socle of RR

|X| cardinality of a set X
Pi(R) a complete set of orthogonal primitive idempotents of an artinian ring R
Z(R) the center of a ring R

–2–



2. Basic concepts and known results

Let R be a finite dimensional algebra over a field F ; put R = x1F ⊕ x2F ⊕ · · · ⊕ xnF .
For u ∈ R, there exist (fij) and (gij) in Mn(F ) such that u(x1, . . . , xn) = (x1, . . . , xn)(fij)
and t(x1, . . . , xn)u = (gij)

t(x1, . . . , xn).
Put r(u) = (fij) and l(u) = (gij). r(u) and l(u) are called the right regular represen-

tation and left regular representation of u, respectively. If there exists a regular matrix
P ∈ Mn(F ) satisfying, for any u ∈ F ,

r(u)P = Pl(u)

then R is called a Frobenius algebra.
In addition, we shall state on Frobenius rings. Let R be a quasi-Frobenius ring. We

arrange Pi(R) as

Pi(R) = {e11, e12, . . . , e1m(1), e21, e22, . . . , e2m(2), . . . , en1, en2, . . . , enm(n)}

where

eijR ∼= eklR if k = i,

eijR ̸∼= eklR if k ̸= i.

Put ei = ei1 for i = 1, . . . , n. There exists a (Nakayama) permutation (eπ(1), . . . , eπ(n))
of (e1, . . . , en) such that (eiR;Rπ(i)) is an i-pair, that is, S(eiR) ∼= eπ(i)R/J(eπ(i)R) and
S(Reπ(i)) ∼= Rei/J(Rei). R is called a Frobenius ring if m(i) = m(π(i)) for all i. Of
course, Frobenius algebras are Frobenius rings (cf. [3]).

3. Structure of quaternion rings H(D)

Recently, Lee-Oshiro showed the following results in [2].

Theorem A. If R is a Frobenius algebra, then C(R),H(R) and O(R) are Frobenius
algebras.

Theorem B. If R is a quasi-Frobenius ring, then C(R) and H(R) are quasi-Frobenius
rings.

It follows from Theorem B that, for a division ring D, C(D) and H(D) are quasi-
Frobenius rings. Our motivation of this paper is to study these quasi-Frobenius rings.

Let R be a ring. In order to study the structure of C(R) and H(R), we first observe
idempotents and nilpotents in these rings. For α = a+ ib+ jc+ kd ∈ H(R), we write

α2 = A+ iB + jC + kD

where a, b, c, d, A,B,C,D ∈ R. Then, by calculation, we see

A = a2 − b2 − c2 − d2, B = ba+ ab+ cd− dc,

C = ca+ ac+ db− bd, D = da+ ad+ bc− cb.
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Therefore,

α2 = 0 ⇐⇒

(#)


a2 − b2 − c2 − d2 = 0
ba+ ab+ cd− dc = 0
ca+ ac+ db− bd = 0
da+ ad+ bc− cb = 0.

Further,

α2 = α ⇐⇒

(∗)


a2 − b2 − c2 − d2 = a
ba+ ab+ cd− dc = b
ca+ ac+ db− bd = c
da+ ad+ bc− cb = d.

By (∗), we obtain

Fact 1. Let F be a field with 2 ̸= 0. Then

α2 = α ⇐⇒ a =
1

2
and

1

4
+ b2 + c2 + d2 = 0.

By (∗), we can show the following:

Theorem 1. Assume 2 ̸= 0.

(1) J(H(D)) = 0 and H(D) is a simple ring.
(2) |Pi(H(D))| = 1 or 2 or 4.
(3) |Pi(H(D))| = 1 iff H(D) is a division ring.
(4) |Pi(H(D))| = 2 =⇒ For any primitive idempotent e ∈ H(D),

H(D) ∼=
(
eH(D)e eH(D)e
eH(D)e eH(D)e

)
.

(5) D = F is a commutative field

=⇒ H(F ) is a division ring or H(F ) ∼=
(
F F
F F

)
.

(6) For a commutative field F , |Pi(H(F ))| = 4 does not occur.

We shall give a sketch of the proof of (1) in this theorem. In order to show J(H(D)) = 0,
we may show the following.

Lemma 2. Let α ∈ H(D). Then

α2 = (αi)2 = (αj)2 = (αk)2 = 0 ⇒ α = 0.

Proof. Let α = a+ ib+ jc+ kd ∈ H(D). By α2 = 0 and (#),

(1) a2 − b2 − c2 − d2 = 0.

Since αi = −b+ ia+ jd− kc and (αi)2 = 0,

(2) b2 − a2 − d2 − c2 = 0.
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Similarly, by (αj)2 = 0 and (αk)2 = 0,

c2 − d2 − a2 − b2 = 0,(3)

d2 − c2 − b2 − a2 = 0.(4)

By (1) + (2), −2c2 − 2d2 = 0 and so c2 + d2 = 0. Hence, b2 = a2. Similarly, by (1) + (3)
and (1) + (4), we obtain c2 = a2 and d2 = a2, therefore a2 = b2 = c2 = d2. Since
a2 − b2 − c2 − d2 = 0, 2a2 = 0 and hence a = 0. Thus a = b = c = d = 0 and hence α = 0,
as required. □

Theorem 3. Assume 2 = 0. Then

(1) Pi(H(D)) = 1.
(2) C(D) is a local quasi-Frobenius ring such that

J(C(D)) = S(C(D)) = eC(D)

where e = 1 + i.
(3) H(D) is a local quasi-Frobenius ring such that

J(H(D)) = (1 + i)H(D) + (1 + j)H(D),

S(H(D)) = (1 + i+ j + k)H(D),

H(D)
ggggg

gggg WWWWW
WWWW

(1 + i)H(D)
WWWWW

(1 + j)H(D)
ggggg

(1 + i+ j + k)H(D) .

Sketch of the proof of (1). Let e = a + bi + cj + dk be an idempotent of H(D). By
using (∗), we can see that (a+ b+ c+ d)2 = a+ b+ c+ d and hence a+ b+ c+ d = 0 or
a + b + c + d = 1. Then a + b + c + d = 0 does not occur, and a + b + c + d = 1 implies
a = 1, b = c = d = 0. Hence e = 1.

Example 4. Let consider Hamilton’s quaternion ring

D := H(R) = R⊕ iR⊕ jR⊕ kR,

and

H(D) = H(H(R)) = H(R)⊕ iH(R)⊕ jH(R)⊕ kH(R).

Then, |Pi(H(D))| = 4. In fact, put

g1 =
1

4
(1 + ii+ jj + kk), g2 =

1

4
(1 + ii− jj − kk),

g3 =
1

4
(1− ii− jj + kk), g4 =

1

4
(1− ii+ jj − kk).

Then, {g1, g2, g3, g4} are orthogonal primitive idempotents and hence |Pi(H(D))| = 4.

Further, for a division ring D with 2 ̸= 0, we can show the following result.
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Theorem 5. If H(D) is a division ring, then

H(H(D)) ∼=


D D D D
D D D D
D D D D
D D D D

 .

In particular,

H(H(R)) ∼=


R R R R
R R R R
R R R R
R R R R

 .

This example and the above theorem show that H(D) and H(F ) are different worlds.
When |Pi(H(D))| = 4, we can obtain the following unexpected result:

Theorem 6. Let D be a division ring with 2 ̸= 0. The following conditions are equivalent:

(1) |Pi(H(D))| = 4.
(2) There exist p, q, r ∈ D such that p2 = −1, q2 = −1, pq = r = −qp.

4. Structure of Complex rings C(D)

We show the following fact.

Theorem 7. For a division ring D, the following are equivalent:

(1) x2 ̸= −1 for all x ∈ D.
(2) C(D) = D ⊕ iD is a division ring.

We give a sketch of the proof.
(1) ⇒ (2). As is easily seen 2 ̸= 0. Assume that C(D) is not a division ring. Then

there exist primitive idempotents e, f ∈ C(D) such that C(D) = eC(D)⊕fC(D). Since
C(D) is a 2-dimensional D-space, eC(D) = eD, and hence there exists x ∈ D such that
ei = ex. Set e = a+ ib (a, b,∈ D). Then, ei = −b+ ia and ex = ax+ ibx. Hence −b = ax
and bx = a, and it follows −b = bx2 and −1 = x2, a contradiction.

(2) ⇒ (1). Note that 2 ̸= 0, because if 2 = 0, then (1 + i)2 = 0, and hence 1 + i = 0, a
contradiction. Now, assume that there exists x ∈ D such that x2 = −1. Then e = 1

2
(1+xi)

is an idempotent. Since D is a division ring, e must be 1, a contradiction.

Remark. The implication (1) ⇒ (2) is shown in Chapter 10 in [1]. Its proof we state
below is complicated but above proof is a ring theoretic one. In fact, let x = α+iβ (α, β ∈
D) be a non-zero element of C(D). If β = 0, then x−1 = α−1. If β ̸= 0, then

(α+ iβ)(β−1α− i)β−1((αβ−1)2 + 1)−1 = 1,

((β−1α)2 + 1)−1(β−1α− i)β−1(α + iβ) = 1.

Hence x−1 = (β−1α− i)β−1((αβ−1)2 + 1)−1.

Theorem 8. Let D be a division ring with 2 ̸= 0. Assume that there exists x ∈ D such
that x2 = −1. Put e = 1

2
(1+ ix), f = 1− e = 1

2
(1− ix). Then C(D) = eC(D)⊕ fC(D).
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(1) If x ∈ Z(D), then e ∈ Z(C(D)), whence C(D) = eC(D) × fC(D) (ring direct
sum).

(2) In the case x ̸∈ Z(D), take d ∈ D such that xd ̸= dx. Then by calculation, we see
that edf = 1

4
(d+ xdx+ i(xd− dx)), from which we see edf ̸= 0. Hence it follows

eC(D) ∼= fC(D), and hence we obtain

C(D) ∼=
(
eC(D)e eC(D)e
eC(D)e eC(D)e

)
.

5. Structure of H(D; a, b) and C(D; a)

Let R be a ring. In order to study the structure of C(R; a) and H(R; a, b), we observe
idempotents and nilpotents in these rings as in Section 3.

For α = x+ iy + jz + kw ∈ H(R; a, b), we write

α2 = A+ iB + jC + kD

where x, y, z, w,A,B,C,D ∈ R. Then, by calculation, we see

A = x2 + y2a+ z2b− w2ab,

B = xy + yx− zwb+ wzb,

C = xz + zx+ ywa− wya,

D = xw + yz − zy + wx.

Therefore,

α2 = 0 ⇐⇒

(#2)


x2 + y2a+ z2b− w2ab = 0
xy + yx− zwb+ wzb = 0
xz + zx+ ywa− wya = 0
xw + yz − zy + wx = 0.

Further,

α2 = α ⇐⇒

(∗2)


x2 + y2a+ z2b− w2ab = x
xy + yx− zwb+ wzb = y
xz + zx+ ywa− wya = z
xw + yz − zy + wx = w.

By (∗2) above, we obtain:

Fact 2. Let F be a field with 2 ̸= 0. Then

α2 = α ⇐⇒ x =
1

2
and

1

4
− y2a− z2b+ w2ab = 0.

Here we state some results on a generalized quaternion ring H(D; a, b), where D is
a division ring with 2 ̸= 0. By (∗2) above, we can show the following result which
corresponds to Theorem 1 in Section 3.

Theorem 9. (1) J(H(D; a, b)) = 0 and H(D; a, b) is a simple ring.
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(2) |Pi(H(D; a, b))| = 1 or 2 or 4.
(3) |Pi(H(D; a, b))| = 1 iff H(D; a, b) is a division ring.
(4) |Pi(H(D; a, b))| = 2 =⇒ For any primitive idempotent e ∈ Pi(H(D; a, b)),

H(D; a, b) ∼=
(
eH(D; a, b)e eH(D; a, b)e
eH(D; a, b)e eH(D; a, b)e

)
.

(5) D = F is a commutative field

=⇒ H(F ; a, b) is a division ring or H(F ; a, b) ∼=
(
F F
F F

)
.

(6) For a commutative field F , |Pi(H(F ; a, b))| = 4 does not occur.

The following results hold:

Theorem 10. The following conditions are equivalent:

(1) |Pi(H(D; a, b))| = 4.
(2) There exist p, q, r ∈ D such that p2 = a, q2 = b, pq = r = −qp.

In these case, the following {gi}i are orthogonal primitive idempotents:

g1 =
1

4
(1 + ipa−1 + jqb−1 + kr(ab)−1),

g2 =
1

4
(1 + ipa−1 − jqb−1 − kr(ab)−1),

g3 =
1

4
(1− ipa−1 + jqb−1 − kr(ab)−1),

g4 =
1

4
(1− ipa−1 − jqb−1 + kr(ab)−1).

Theorem 11. Let D be a division ring with 2 ̸= 0. Then the following conditions are
equivalent.

(1) x2 ̸= a for all x ∈ D.
(2) C(D; a) is a division ring.

Proof. (1) ⇒ (2). Assume that C(D; a) is not a division ring. Then there exists a
primitive idempotent e = x + iy ̸= 1. Since C(D; a) = eC(D; a) ⊕ (1 − e)C(D; a), we
see that eC(D; a) = eD. Hence we can take p in D such that ei = ep. Hence it follows
ya+ xi = xp+ ypi. Hence ya = xp and x = yp and hence ya = yp2. Therefore a = p2, a
contradiction.

(2) ⇒ (1). Assume that there exists x ∈ D such that x2 = a. Put e = 1
2
(1+ix−1). Then

e is an idempotent. Since C(D; a) is a division ring, e must be 1, a contradiction. □
We skip to state the structures of H(H(D; a, b); c, d), H(C(D; a); c, d), C(C(D; a); b)

etc.
Finally we shall comment consistency between a classical theorem on H(F ; a, b) and

our theory on Pi(F ; a, b), where F is a field with 2 ̸= 0.
The following is known as a classical theory on H(F ; a, b) with 2 ̸= 0.

The following are equivalent:
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(1) H(F ; a, b) ∼=
(
F F
F F

)
.

(2) The equation X2 − aY 2 − bZ2 + abW 2 = 0 has a non-trivial solution in F .
(3) The equation X2 − aY 2 − bZ2 = 0 has a non-trivial solution in F .

But the following conditions are not equivalent to these conditions.

(4) The equation X2 − aY 2 = 0 has a non-trivial solution in F .

On the other hand, from our theory, we can show that the following are equivalent:

(1) H(F : a, b) ∼=
(
F F
F F

)
.

(2’) The equation 1
4
− aY 2 − bZ2 + abW 2 = 0 has a solution in F .

(3’) The equation 1
4
−aY 2−bZ2 = 0 has a solution in F , or the equation 1

4
+abW 2 = 0

has a solution in F .

(2”) There exists an idempotent e of the form e = 1
2
+ ix+ jy + kz ∈ H(F ; a, b).

(3”) There exists an idempotent e of the form e = 1
2
+ ix+ jy ∈ H(F ; a, b), or e of the

form e = 1
2
+ kw ∈ H(F ; a, b).

By way of parenthesis, we shall state (2), (3) imply (2’), (3’), (2”), (3”).
Assume the equation X2 − aY 2 − bZ2 + abW 2 = 0 has a non-trivial solution, say

(x, y, z, w). If x ̸= 0, then 1
4
− a(y(2x)−1)2 − b(z(2x)−1)2 + ab(w(2x)−1)2 = 0, and hence

e = 1
2
+ iy(2x)−1 + jz(2x)−1 + kw(2x)−1 is an idempotent.

If x = 0, then −ay2 − bz2 + abw2 = 0. Here assume w ̸= 0. Then by calculation, we
see 1

4
− a(z(2aw)−1)2 − b(y(2bw)−1)2 = 0, and hence e = 1

2
+ iz(2aw)−1 + jy(2bw)−1 is an

idempotent.
Furthermore, assume that x = 0 and w = 0. Then ay2 + bz2 = 0 and it follows

(ay)2 + abz2 = 0, from which we see e = 1
2
+ kz(2ay)−1 is an idempotent.
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