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Abstract. For a triangulated category T , it is known that the category of finitely pre-
sented functors mod T on T is a Frobenius category. Let A be a representation finite
hereditary algebra. Iyama and Oppermann [IO] showed that the categorymodDb(modA)
is triangle equivalent to the bounded derived category of the stable Auslander algebra
of A. In this paper, we extend this triangle equivalence to the case when A is a repre-
sentation infinite hereditary algebra.

1. Introduction

Let k be a field and A be a finite dimensional k-algebra. In [IO], it was shown that if
A is a representation finite hereditary algebra, then there exists a triangle equivalence

modDb(modA) ≃ Db(modΓA),(1.1)

where ΓA is the stable Auslander algebra of A, that is, the Auslander algebra of modA.
In this paper, we extend a triangle equivalence (1.1) to the case when A is a representa-

tion infinite hereditary algebra, that is, our main theorem of this paper is Theorem 14. In
this case, the role of the stable Auslander algebra is played by the category mod(modA)
of finitely presented functors on modA.

To prove Theorem 14, we need to give general preliminary results on functor categories
and repetitive categories. The functor category mod(modA) is an abelian category with
enough projectives and enough injectives since the category modA forms a dualizing k-
variety, which is a distinguished class of k-linear categories introduced by Auslander and
Reiten [AR]. A key role is played by the repetitive category R(modA) of modA. We see
that for a dualizing k-variety A, its repetitive category RA is also a dualizing k-variety
(Theorem 12). Moreover, we see that modRA is a Frobenius abelian category.

In the case where A is a representation finite hereditary algebra, the Happel’s theorem
(Theorem 5) played an important role in the proof of a triangle equivalence (1.1). We see
that a categorical analog of this triangle equivalence for dualizing k-varieties holds. In fact,
we deal with the following more general class of categories including dualizing k-varieties.
For a k-linear additive category A, we denote by projA the category of finitely generated
projective A-modules and by mod∞A the category of A-modules having resolutions by
projA. We consider the following conditions:

(IFP) DA(X,−) is in mod∞A for each X ∈ A, where D = Homk(−, k).

(G) DA(X,−) has finite projective dimension over A for each X ∈ A.

The detailed version of this paper will be submitted for publication elsewhere.
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For example, if A is a dualizing k-variety, then A satisfies the condition (IFP). On the
other hand, the condition (G) is a categorical version of Gorensteinness. Gorenstein-
projective modules (also known as Cohen-Macaulay modules, totally reflexive modules)
are important class of modules. We denote by GP(RA,A) the category of Gorenstein-
projective RA-modules of finite projective dimension as A-modules. Under the conditions
(IFP) and (G), we can show Theorem 9, which induces a categorical analog of Happel’s
triangle equivalence.

Notation. In this paper, we denote by k a field. All categories are k-linear additive
categories. All subcategories are full and closed under isomorphisms. Let C be a k-linear
additive category and S be a subclass of objects of C or a subcategory of C. We denote
by addS the subcategory of C whose objects are direct summands of finite direct sums of
objects in S. For objects X, Y ∈ C, we denote by C(X, Y ) the set of morphisms from X
to Y in C. We call C Hom-finite if C(X,Y ) is finitely generated over k for any X,Y ∈ C.
We call a category skeletally small if the class of isomorphism class of objects is a set. We
assume that all categories in this paper are skeletally small.

All algebras are k-algebras. For an algebra A, we denote by modA the category of
finitely generated left A-modules and by modA the projectively stable category of A.

2. Functor categories

In this section, we recall the definition of modules over categories. Let A be a k-linear
additive category. An A-module is a contravariant additive k-linear functor from A to
mod k. We denote by ModA the category of A-modules, where morphisms of ModA are
morphisms of functors. Since A is skeletally small, ModA is a category. It is well known
that ModA is abelian.

Example 1. For each X ∈ A, we have an A-module A(−, X). By Yoneda’s lemma,
A(−, X) is projective in ModA.

Let M be an A-module. We call M a finitely presented module if there exists an exact
sequence A(−, X) → A(−, X) → M → 0 in ModA for some X, Y ∈ A. We denote by
modA the subcategory of ModA consisting of finitely presented functors. Note that modA
is not necessarily an abelian category.

Let A be a finite dimensional algebra. We denote by projA the category of finitely
generated projective A-modules. Then we have an equivalence mod(projA) ≃ modA.
Assume that A is a representation finite algebra, that is, there exists a basic A-module M
satisfying addM = modA. We call the algebra ΓA := EndmodA(M) the stable Auslander
algebra of A. We have an equivalence projΓA ≃ modA.

A finite dimensional algebra is said to be hereditary if the global dimension is at most
one. We recall the result of Iyama and Oppermann.

Theorem 2. [IO, Corollary 4.11] Let A be a finite dimensional representation finite
hereditary algebra and ΓA the stable Auslander algebra of A. Then we have a triangle
equivalence

modDb(modA) ≃ Db(modΓA).
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In this paper, we extend the triangle equivalence of Theorem 2 to the case when A
is a representation infinite hereditary algebra. We deal with the derived category of
mod(modA) in stead of that of modΓA, since modΓA ≃ mod(modA) holds if A is a
representation finite algebra.

3. Repetitive categories

In this section, we recall the definition of the repetitive category of an additive category.
As we see in Proposition 4, the repetitive category of the stable category of A is equivalent
to the derived category of A. Let D := Homk(−, k) be the standard k-dual.

Definition 3. Let A be a k-linear additive category. The repetitive category RA is the
k-linear additive category generated by the following category: the class of objects is
{(X, i) | X ∈ A, i ∈ Z} and the morphism space is given by

RA
(
(X, i), (Y, j)

)
=


A(X,Y ) i = j,

DA(Y,X) j = i+ 1,

0 else.

For f ∈ RA
(
(X, i), (Y, j)

)
and g ∈ RA

(
(Y, j), (Z, k)

)
, the composition is given by

g ◦ f =


g ◦ f i = j = k,(
DA(Z, f)

)
(g) i = j = k − 1,(

DA(g,X)
)
(f) i+ 1 = j = k,

0 else.

Since the global dimension of a hereditary algebra A is at most one, Db(modA) has a
Serre functor S = D(A)⊗L

A −. If A is hereditary, then there exists a fully faithful functor
modA → modA. By this functor, we regard modA as a subcategory of Db(modA). The
following proposition was shown by [IO] for a representation finite hereditary algebra and
by [K] for a representation infinite hereditary algebra.

Proposition 4. [IO, K] Let A be a hereditary algebra. Then we have an additive equiva-
lence R(modA) ≃ Db(modA) given by (X, i) 7→ S−i(X).

Therefore to show Theorem 14, it is enough to show that there exists an equivalence
between the category mod(R(modA)) and the bounded derived category Db(mod(modA)).
As we see in the following, if A is a representation finite hereditary algebra, then this
equivalence is nothing but Happel’s triangulated equivalence.

LetA be a representation finite hereditary algebra. It is easy to see thatmodR(projΓA) ≃
mod Γ̂A, where Γ̂A is the repetitive algebra of ΓA (see [H]). About the repetitive algebras,
Happel showed the following theorem.

Theorem 5. [H] Let A be a finite dimensional algebra and Â be the repetitive algebra of

A. Then mod Â is a Frobenius abelian category. If the global dimension of A is finite,

then we have a triangle equivalence mod Â ≃ Db(modA).

By applying Proposition 4 and Theorem 5, we have Theorem 2.
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Proof of Theorem 2. LetA be a finite dimensional representation finite hereditary algebra.
Then we have

modDb(modA) ≃ modR(modA) ≃ mod Γ̂A ≃ Db(modΓA).

□
In the next section, we see that the categorical analog of Theorem 5 holds. And by

using it, in Section 5, we show Theorem 14 holds.

4. Gorenstein-projective modules and Happel’s theorem

We define Gorenstein-projective modules. Let A be an additive category. We first
define a contravariant functor

(−)∗ : ModA → ModAop

as follows: for M ∈ ModA and X ∈ A, let (M)∗(X) := (ModA)(M,A(−, X)). By the
same way, we define a contravariant functor (−)∗ : ModAop → ModA. Let P• := (Pi, di :
Pi → Pi+1)i∈Z be a complex of finitely generated projective A-modules. We say that P•
is totally acyclic if complexes P• and · · · → (Pi+1)

∗ → (Pi)
∗ → (Pi−1)

∗ → · · · are acyclic.

Definition 6. Let A be an additive category. An A-module M is said to be Gorenstein-
projective if there exists a totally acyclic complex P• such that the image of d0 is isomorphic
to M . We denote by GPA the full subcategory of ModA consisting of all Gorenstein-
projective A-modules.

For instance, a finitely generated projective A-module is Gorenstein-projective. We
denote by mod∞A the category of A-modules having resolutions by projA. In general,
GPA ⊂ mod∞A holds. The following proposition is well-known.

Proposition 7. Let A be an additive category. Then GPA is a Frobenius category, where
the relative-projective objects are precisely finitely generated A-modules.

We consider the Gorenstein-projective modules over repetitive categories and certain
subcategories of it. Let A be a k-linear additive category and i ∈ Z. Put the following
full subcategory of RA:

Ai := add{ (X, i) ∈ RA | X ∈ A}.
An inclusion functor Ai → RA induces an exact functor

ρi : ModRA → ModAi.

Moreover, we denote by
ρ : ModRA → ModA

the forgetful functor, that is, ρ(M) :=
⊕

i∈Z ρi(M) for any M ∈ ModRA, where we regard
an Ai-module ρi(M) as an A-module by the equivalence ModAi ≃ ModA. We denote
by GP(RA,A) the full subcategory of GP(RA) consisting of all objects M such that the
projective dimension of ρ(M) over A is finite, that is,

GP(RA,A) := {M ∈ GP(RA) | projdimA ρ(M) < ∞}.
We consider the following condition on A:
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(G) : the projective dimension of DA(X,−) over A is finite for any X ∈ A.

This condition induces that the category GP(RA,A) is Frobenius. In fact, we can show
the following proposition.

Proposition 8. Let A be a k-linear, Hom-finite additive category. Then A satisfies (G)
if and only if projRA ⊂ GP(RA,A) holds. In this case, the following statements fold.

(a) GP(RA,A) is a Frobenius category such that the projective objects is the objects of
projRA.

(b) The inclusion functor GP(RA,A) → GP(RA) induces a fully faithful triangle func-
tor GP(RA,A) → GP(RA).

We also consider the following condition on A:

(IFP) : DA(X,−) ∈ mod∞A holds for any X ∈ A.

Note that ifA is a dualizing k-variety (see Definition 10), then mod∞A = modA holds and
A satisfies (IFP). Then we can show the following theorem, which induces a categorical
analog of Haapel’s theorem, see also Theorem 12 (c).

Theorem 9. Let A be a k-linear, Hom-finite additive category and assume that A and
Aop satisfy (IFP).

(a) If A and Aop satisfy (G), then we have a triangle equivalence

Kb(projA) ≃ GP(RA,A).

(b) If each object of mod∞A and mod∞Aop has finite projective dimension, then
GP(RA) = GP(RA,A) holds. In particular, we have a triangle equivalence

Kb(projA) ≃ GP(RA).

5. Dualizing varieties and the main theorem

We first recall the definition of dualizing k-varieties. Let A be a k-linear additive
category. A morphism e : X → X in A is called an idempotent if e2 = e. We call A
idempotent complete if each idempotent of A has a kernel. The standard k-dual D =
Homk(−, k) induces a contravariant functors, we also denote them by D, D : ModA →
ModAop and D : ModAop → ModA given by (DM)(X) := D(M(X)).

Definition 10. Let A be a k-linear, Hom-finite, idempotent complete additive category.
We call A a dualizing k-variety if the functor D : ModA → ModAop induces a duality
between modA and modAop.

The following is typical examples of dualizing k-varieties.

Example 11. [AR]

(a) If A is a dualizing k-variety, then Aop is a dualizing k-variety and modA is an
abelian dualizing k-variety.

(b) Let A be a finite dimensional algebra. Then modA and projA are dualizing k-
varieties.

We can show that the repetitive category of a dualizing k-variety is a dualizing k-variety.

Theorem 12. [K] Let A be a dualizing k-variety. Then the following holds.
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(a) RA is a dualizing k-variety.
(b) modRA = GP(RA) holds, which is a Frobenius abelian category.
(c) If any modules in modA and modAop have finite projective dimension, then A and

Aop satisfy (G) and GP(RA) = GP(RA,A) holds. In particular, we have a triangle
equivalence modRA ≃ Db(modA).

Note that the statements (b) of the above theorem is a direct consequence of (a), and
(c) follows from Theorem 9.

Let A be a finite dimensional algebra. By Example 11 (b), projA is a dualizing k-
variety. If the global dimension of A is finite, then by applying Theorem 12 to projA, we
have Theorem 5.

We need the following result by Auslander and Reiten to show our main theorem.

Proposition 13. [AR, Propositions 6.2, 10.2] Let A be a dualizing k-variety and B :=
modA. Let P be the full subcategory of B consisting of the projective modules. Then the
following statements hold.

(a) B/[P ] is a dualizing k-variety.
(b) Assume that the global dimension of modA is at most n, then the global dimension

of mod(B/[P ]) is at most 3n− 1.

Now we are ready to show the main theorem of this paper.

Theorem 14. [IO, K] Let A be a finite dimensional hereditary algebra. Then we have a
triangulated equivalence

modDb(modA) ≃ Db(mod(modA)).

Proof. By Proposition 4, we have modDb(modA) ≃ modR(modA). By Proposition 13
and Theorem 12, we have modR(modA) ≃ Db(mod(modA)). □

References

[AR] M. Auslander, I. Reiten, Stable equivalence of dualizing R-varieties, Adv. Math. 12 (1974), 306–366.
[H] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London

Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.
[IO] O. Iyama, S. Oppermann, Stable categories of higher preprojective algebras, Adv. Math. 244 (2013),

23–68.
[K] Y. Kimura, Singularity categories of derived categories of hereditary algebras are derived categories,

arXiv:1702.04550.

Graduate School of Mathematics
Nagoya University
Froucho, Chikusaku, Nagoya, 464-8602, JAPAN

E-mail address: m13025a@math.nagoya-u.ac.jp

–6–


