ON FINITELY GRADED IG-ALGEBRAS AND THE STABLE CATEGORIES OF THEIR (GRADED) CM-MODULES

HIROYUKI MINAMOTO AND KOTA YAMAURA

Abstract. We discuss finitely graded Iwanaga-Gorenstein (IG) algebras A and representation theory of their (graded) Cohen-Macaulay (CM) modules. By quasi-Veronese algebra construction, in principle, we may reduce our study to the case where A is a trivial extension algebra $A = \Lambda \oplus C$ with the grading $\deg \Lambda = 0$, $\deg C = 1$. We give a necessary and sufficient condition that A is IG in terms of Λ and C by using derived tensor products and derived Hom's. For simplicity, in the sequel, we assume that Λ is of finite global dimension. Then, we show that the condition that A is IG, has a triangulated categorical interpretation. We prove that if A is IG, then the graded stable category $\text{CM}^Z A$ of CM-modules is realized as an admissible subcategory of the derived category $\mathcal{D}b(\text{mod}\Lambda)$. As a corollary, we deduce that the Grothendieck group $K_0(\text{CM}^Z A)$ is finite rank. We show that the stable category $\text{CM}^Z A$ of (non-graded) CM-modules is realized as the orbit category of the derived category $\mathcal{D}b(\text{mod}\Lambda)$ with respect to a certain autoequivalence.

We give several applications. Among other things, for a path algebra $\Lambda = KQ$ of an A_2 or A_3 quiver Q, we give a complete list of Λ-Λ-bimodule C such that $\Lambda \oplus C$ is IG by using the triangulated categorical interpretation mentioned above.

1. Introduction

This is a brief report on [6, 7], the main aim of which is a general study of representation theory of finitely graded Iwanaga-Gorenstein algebras.

Representation theory of (graded) Iwanaga-Gorenstein algebra was initiated by Auslander-Reiten [1], Happel [4] and Buchweitz [2], has been studied by many researchers and is recently getting interest from other areas.

Recall that an algebra A is called Iwanaga-Gorenstein (IG) if it is Noetherian and of finite injective dimension on both sides. A module M over an IG-algebra A is called Cohen-Macaulay (CM) if $\text{Ext}_A^i(M, A) = 0$ for any $i > 0$. The full subcategory $\text{CMA} \subset \text{mod}\Lambda$ of CM-modules forms a Frobenius category such that the admissible projective-injective objects are precisely projective A-modules. Hence the stable category $\text{CM}^Z A = \text{CMA}/[\text{proj}\Lambda]$ has a structure of triangulated categories. Representation theory of IG algebras mainly studies these categories.

For a Noetherian algebra A, the singular derived category $\text{Sing}A$ is defined as the Verdier quotient $\text{Sing}A := \mathcal{D}b(\text{mod}\Lambda)/\mathcal{K}b(\text{proj}\Lambda)$. (If we perform the same construction to an algebraic variety X, then we obtain a triangulated category $\text{Sing}X$ which only related to the singular locus of X. Hence, the name. This category plays an important role in Mirror symmetry.) Buchweitz and Happel showed that if A is IG, then there exists a canonical equivalence $\text{CM}^Z A \cong \text{Sing}A$.

The detailed version of this paper will be submitted for publication elsewhere.
We have the same story for a graded IG algebra and graded CM-modules over it.

1.1. Remarks on generality. In this proceeding, we restrict ourselves to deal with finite dimensional algebras over a field \(K \). (Bi)modules are always finite dimensional and bimodule is always \(K \)-central. Moreover, we often give our result under the assumption that \(\text{gldim} \Lambda < \infty \). However almost of all results are verified in more or less wider generality.

For the general form of Theorem 2,3,4,6,7 we refer [6]. Theorem 7,8 are verified for a \((\text{not necessarily finite dimensional})\) IG-algebra \(\Lambda \). But we need to replace \(D^b(\text{mod}\Lambda) \) with \(K^b(\text{proj}\Lambda) \). We also need to replace \(\text{CM}Z^{}A \) with the stable category of “locally perfect” CM-modules, the definition of which will be given our forthcoming paper [7].

2. Quasi-Veronese algebra construction

We recall quasi-Veronese algebra construction introduced by Mori [8].

Let \(B = \bigoplus_{i \in \mathbb{Z}} B_i \) be a \(\mathbb{Z} \)-graded algebra. For \(e \in \mathbb{N} \), we define the \(e \)-th quasi-Veronese algebra \(B[e] \) of \(B \) as below

\[
B[e] := \bigoplus_{i \in \mathbb{Z}} B_i^e, \quad B_i^e := \left(\begin{array}{cccc}
B_{ei} & B_{ei+1} & \cdots & B_{e(i+1)-1} \\
B_{ei-1} & B_{ei} & \cdots & B_{e(i+1)-2} \\
& \vdots & \ddots & \vdots \\
B_{e(i-1)+1} & B_{e(i-1)+2} & \cdots & B_{ei}
\end{array} \right)
\]

The \(i \)-th degree part is \(B_i^e \) and the multiplication is the matrix multiplication. The basic fact is the following.

Theorem 1. \(B \) and \(B[e] \) are graded Morita equivalent to each other.

\[qv : \text{GrMod} B \cong \text{GrMod} B[e] \]

It is may helpful for understanding to pointing out that \(B[e] \) is nothing but the endomorphism algebra of \(G = B \oplus B(-1) \oplus \cdots \oplus B(-e+1) \) with the grading induced from the \(e \)-th degree shift functor \((e)\).

\[B[e] \cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{\text{GrMod} B}(G, G(ie)) \]

We focus our attention to a finitely graded algebra \(A = \bigoplus_{i=0}^\ell A_i \). Then an easy but helpful observation is that \(\ell \)-th quasi-Veronese algebra \(A[\ell] \) is concentrated in degree 0 and 1. If we set

\[
\nabla A := A[0]^{\ell} = \left(\begin{array}{cccc}
A_0 & A_1 & \cdots & A_{\ell-1} \\
0 & A_0 & \cdots & A_{\ell-2} \\
& \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_0
\end{array} \right), \quad \Delta A := A[1]^{\ell} = \left(\begin{array}{cccc}
A_0 & 0 & \cdots & 0 \\
A_{\ell-1} & A_0 & \cdots & 0 \\
& \vdots & \ddots & \vdots \\
A_1 & A_2 & \cdots & A_\ell
\end{array} \right),
\]

then \(A[\ell] \) is the trivial extension algebra of \(\nabla A \) by \(\Delta A \) with the canonical grading \(\text{deg} \nabla A = 0 \) and \(\text{deg} \Delta A = 1 \).

\[A[\ell] = \nabla A \oplus \Delta A \]

We note that the algebra \(\nabla A \) is called the Beilinson algebra of \(A \).

2
In view of Theorem 1, A and $A^{[\ell]}$ share every representation theoretic property. In particular, A is IG if and only if so is $A^{[\ell]}$. If this is the case, then the equivalence qv induces an equivalence

\[\mathcal{CM}^\mathbb{Z} A \cong \mathcal{CM}^\mathbb{Z} A^{[\ell]} \]

Hence, representation theoretic study of finitely graded IG-algebras can be, in principle, reduced to IG-algebra which is a trivial extension algebra $A = \Lambda \oplus C$.

3. When is $A = \Lambda \oplus C$ IG? When A is IG!

We investigate the question posed in the section title. An iterated derived tensor product C^a plays a key role.

First we study the following related question.

3.1. When $\text{gldim} A < \infty$? The following is essentially proved by Palmer-Roos [10] and Lofwall [5].

Theorem 2. $\text{gldim} A < \infty$ if and only if $\text{gldim} A < \infty$ and $C^a = 0$ for $a \gg 0$.

For the proof we make use of the canonical grading of A, namely $\text{deg} \Lambda = 0$ and $\text{deg} C = 1$. Orlov [9] introduced a decomposition of complexes of graded projective A-module according to the degree of generators. By closely looking the decomposition, we obtain the above result. For the details we refer [6]. By the same method, we get a description of the kernel of the canonical functor

\[\varpi : D^b(\text{mod} \Lambda) \xrightarrow{\text{deg} 0 \text{ embed.}} D^b(\text{mod} \Lambda) \xrightarrow{\text{quotient}} \text{Sing} \mathbb{Z} A = D^b(\text{mod} \Lambda) / K^b(\text{proj} \mathbb{Z} A) \]

where the first functor regard a complex M of Λ-modules as a complex of graded A-modules concentrated in 0-th degree.

Theorem 3. Assume that C has finite projective dimension as a right Λ-module. Then

\[\text{Ker} \varpi = \bigcup_{a \geq 0} \text{Ker}(- \otimes^\mathbb{L} A^a) |_K \]

3.2. When $\text{id} A < \infty$? Let λ^a_r be the morphism below induced from $- \otimes^\mathbb{L} A^a$

\[\lambda^a_r : \mathbb{R} \text{Hom}_\Lambda(C^a, \Lambda) \rightarrow \mathbb{R} \text{Hom}_\Lambda(C^{a+1}, C) \]

where the subscript r stands for “right”.

Theorem 4. Assume that $\text{gldim} \Lambda < \infty$. Then $\text{id} A < \infty$ if and only if the morphism λ^a_r is an isomorphism in $D^b(\text{mod} \Lambda)$ for $a \gg 0$.

We call the latter condition the right asid condition, where asid is abbreviation of attaching self-injective dimension.

We introduce an important invariant for a right asid module.

Definition 5. Assume that C satisfies the right asid condition. Then, we define the right asid number α_r to be

\[\alpha_r := \min\{a \geq 0 \mid \lambda^a_r \text{ is an isomorphism.}\} \]
This number relates to a graded minimal injective resolution \(I^* \) of \(A \) as in the following way.

Theorem 6. Assume \(\text{id}A < \infty \). Let \(\Omega^{-n}A = \text{Ker}[\delta^n : I^n \to I^{n+1}] \) be the \(n \)-th cosyzygy. Then,

\[\alpha_r = \max\{a \geq 1 \mid \exists n, \, \text{soc}(\Omega^{-n}A)_{-a} \neq 0\} + 1. \]

3.3. **When is \(A = \Lambda \oplus C \) IG?** Now it is easy to answer the question. Let \(\lambda^0 \) the left version of \(\lambda_a \).

\[\lambda^0 : \mathbb{R}\text{Hom}_{\Lambda^{\text{op}}}(C^a, \Lambda) \to \mathbb{R}\text{Hom}_{\Lambda^{\text{op}}}(C^{a+1}, C) \]

Theorem 7. Assume that \(\text{gldim} \Lambda < \infty \). Then \(A = \Lambda \oplus C \) is IG if and only if the morphism \(\lambda^0 \) and \(\lambda^0 \) are isomorphism for \(a \gg 0 \).

We call an bimodule \(C \) asid if \(A = \Lambda \oplus C \) is IG. For such module we can define the left asid number \(\alpha_{\ell} \) as well as the right asid number \(\alpha_r \).

\[\alpha_r := \min\{a \geq 0 \mid \lambda^0 \text{ is an isomorphism.}\}, \]
\[\alpha_{\ell} := \min\{a \geq 0 \mid \lambda^0 \text{ is an isomorphism.}\}. \]

3.4. **Categorical characterization of asid bimodule.** The condition that \(C \) is asid bimodule has a characterization in a triangulated categorical term.

We recall that a subcategory \(E \) of a triangulated category \(D \) is called **admissible** if the canonical inclusion \(E \subset D \) has a left adjoint functor and a right adjoint functor. It is known that \(E \) is admissible if and only if it fits the following two semi-orthogonal decompositions

\[D = E \perp E^\perp = {^+E} \perp E. \]

Theorem 8. Assume that \(\text{gldim} \Lambda < \infty \). A bimodule \(C \) over \(\Lambda \) is asid if and only if there exists an admissible subcategory \(T \subset D^b(\text{mod} \Lambda) \) which satisfies the following conditions

1. **The functor** \(T = - \otimes^L \Lambda C \) **acts on** \(T \) **as an equivalence**, i.e., \(T(T) \subset T \) and the restriction functor \(T|_T : T \twoheadrightarrow T \) is an equivalence.

2. **The functor** \(T = - \otimes^L \Lambda C \) **nilpotently acts on** \(T^\perp \), i.e., \(T(T^\perp) \subset T^\perp \) and \(T^a(T^\perp) = 0 \) for some \(a \in \mathbb{N} \).

3.5. **When \(A = \Lambda \oplus C \) is IG!** When \(A = \Lambda \oplus C \) is IG, we have the following result.

Theorem 9. Assume that \(\text{gldim} \Lambda < \infty \). Let \(C \) be an asid bimodule over \(\Lambda \). Then the followings hold.

1. \(\alpha_r = \alpha_{\ell} \).

We put \(\alpha := \alpha_r = \alpha_{\ell} \).

2. **The admissible subcategory** \(T \subset D^b(\text{mod} \Lambda) \) **satisfying the conditions (1) and (2) of Theorem 8** is uniquely determined as in the first equality below. The functor \(\varpi \) induces an equivalence shown as below.

\[T = \text{thick}C^a \cong \text{CM}^Z A. \]

3. **The following equalities hold.**

\[T^\perp = \text{Ker}(- \otimes^L \Lambda C^a) = \text{Ker} \varpi \]

4. \(\alpha = \min\{a \geq 0 \mid T^\perp \otimes^L C^a = 0\} \).
We would like to mention one thing. A semi-orthogonal decomposition of a triangulated category is considered as a categorification of a direct sum decomposition of a vector space. Since \(\text{thick} \mathcal{C} \) can be considered as \(\text{Im}(L \mathcal{C}) \), thus, from the above viewpoint, the semi-orthogonal decomposition of \(\mathcal{D} \text{b}(\text{mod}) \) by \(T \) and \(T^\perp \) given in the above theorem can be looked as a categorification of a direct sum decomposition appeared in Fitting Lemma

\[
\mathcal{D} \text{b}(\text{mod}) = \text{Im}(- \otimes^L_\mathcal{C} C^\alpha) \perp \text{Ker}(- \otimes^L_\mathcal{C} C^\alpha).
\]

3.6. Application to a finitely graded IG-algebra. By quasi-Veronese algebra construction, we deduce the following consequence from Theorem 9.

Corollary 10. Let \(A = \bigoplus_{i=0}^\ell A_i \) be a finitely graded IG-algebra. Assume that \(\text{gldim} A_0 < \infty \). Then the Grothendieck group \(K_0(\mathcal{C} \text{M}^Z A) \) is free of finite rank. Moreover,

\[
\text{rank} K_0(\mathcal{C} \text{M}^Z A) \leq \ell |A|
\]

where \(|A| \) denotes the number of non-isomorphic simple \(A \)-modules.

This result follows from that the category \(\mathcal{C} \text{M}^Z A \cong \mathcal{C} \text{M}^Z A[\ell] \) is an admissible subcategory of \(\mathcal{D} \text{b}(\text{mod} \nabla A) \). Now it is clear the bound of the rank is nothing but the number of non-isomorphic simple \(\nabla A \)-module.

4. Applications

4.1. Two classes of CM-finite algebras. As an application, we give two classes of CM-finite algebras. The main tool other than our result is the following theorem obtained in a joint work with M. Yoshiwaki, which is a CM-version of Gabriel’s theorem which assert that finiteness of representation type is preserved by taking orbit category.

Theorem 11 (MY-Yoshiwaki). Let \(A \) be a finite dimensional graded IG algebra. Then, \(A \) is of finite CM type if and only if it is of finite graded CM type. Moreover, if this is the case, the functor \(\text{mod}^Z A \to \text{mod} A \) which forgets the grading induces the equality \(\text{indCM}^Z A/(1) = \text{indCM} A \).

The first application is the followings. It is worth noting that the algebras \(A \) in the theorem below is possibly of infinite representation type.

Theorem 12. Let \(\Lambda \) be an iterated tilted algebra of Dynkin type. If a trivial extension algebra \(A = \Lambda \oplus C \) is IG, then it is of finite CM type.

In the above theorem, CM-representation type is controlled by the degree 0-part. Contrary to this, in the next example, CM-representation theory is controlled by the degree 1-part.

An easy way to get a bimodule is to take a tensor product \(N \otimes_K M \) of a right module \(N \) and a left module \(M \).

Theorem 13. Assume \(\text{gldim} \Lambda < \infty \). Let \(A = \Lambda \oplus (N \otimes_K M) \). Then,

1. \(\text{gldim} A < \infty \) if and only if \(M \otimes_\Lambda^R N = 0 \).
2. \(A \) is IG and \(\text{gldim} A = \infty \) if and only if \(\text{RHom}(M, M) \cong K \) and \(\text{RHom}(M, \Lambda) = N[-p] \) for some \(p \in \mathbb{N} \).

If (2) is the case, then the followings hold.
(a) Let \(p \) be the integer in (2). Then \(p = \text{pd}_\Lambda M = \text{pd}_{\Lambda^{op}} N \).

(b) \(\text{CM}^Z A \cong D^b(\text{mod}K) \) under which (1) corresponds \([p + 1] \).

(c) \(\text{CM}^Z A \cong (\text{mod}K)^{\oplus p + 1} \).

(d) \(\text{indCM}^Z A = \{ M, \Omega M, \cdots, \Omega^p M \} \) where the syzygies are taken as \(A \)-modules.

Example 14. Let \(\Lambda \) be a basic finite dimensional algebra of finite global dimension and \(e, f \in \Lambda \) idempotent elements. Then the algebra \(A = \Lambda \oplus (\Lambda e \otimes_K f \Lambda) \) is of finite global dimension if and only if \(f \Lambda e = 0 \). The algebra \(A \) is an IG algebra of infinite global dimension if and only if \(e = f \) and \(\dim \Lambda e = 1 \).

On the other hands, X-W. Chen [3] showed that \(\text{Sing} A \) is Hom-finite if and only if \(\dim f \Lambda e \leq 1 \). Thus we conclude that there are finite dimensional algebras \(A \) which is not IG but whose singular derived category \(\text{Sing} A \) is Hom-finite.

4.2. Classification. Using the categorical characterization of Theorem 8, we obtain the complete list of asid modules \(C \) when \(\Lambda \) is the path algebra of \(A_2 \)-quiver or \(A_3 \)-quiver in the following strategy.

Step 1. Classify admissible subcategories \(T \) of \(K^b(\text{proj}) \).

Step 2. For an admissible subcategory \(T \), classify bimodules \(C \) such that the functor \(- \otimes_K C \) acts on \(T \) as an equivalence and nilpotently acts on \(T^* \).

We give the list of \(T \) and \(C \) over \(\Lambda = K[1 \leftarrow 2] \). In the list, \(P_1, P_2 \) denote the indecomposable projective modules which correspond to the vertex 1, 2 respectively. \(I_2 \) is the indecomposable injective module which corresponds to the vertex 2. \(S_1^{\text{left}} \) denotes the simple left \(\Lambda \)-module which corresponds to the vertex 1. \(S_2^{\text{right}} \) denotes the simple right \(\Lambda \)-module which corresponds to the vertex 2.

(I) \(T = D^b(\text{mod}\Lambda) \) (precisely the case \(\alpha = 0 \)).

(II) \(T = \text{add}\{ P_1[i] \mid i \in \mathbb{Z} \} \)

(III) \(T = \text{add}\{ P_2[i] \mid i \in \mathbb{Z} \} \)

(IV) \(T = \text{add}\{ I_2[i] \mid i \in \mathbb{Z} \} \)

(V) \(T = 0 \) (precisely the case \(\text{gldimA} < \infty \)).

(V-1) \(C = (\Lambda e_2 \otimes_K e_1 \Lambda)^{\oplus n} \)

(V-2) \(C = (S_1^{\text{left}} \otimes_K e_2 \Lambda)^{\oplus n} \)

(V-3) \(C = (\Lambda e_1 \otimes_K S_2^{\text{right}})^{\oplus n} \)

For the list of \(A_3 \) case, we refer [7].

References

HIROYUKI MINAMOTO DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES OSAKA PREFECTURE UNIVERSITY SAKAI NAKAMOZU, OSAKA 599-8531 JAPAN Email: minamoto@mi.s.osakafu-u.ac.jp

KOTA YAMAURA GRADUATE FACULTY OF INTERDISCIPLINARY RESEARCH, FACULTY OF ENGINEERING UNIVERSITY OF YAMANASHI KOFU TAKEDA, YAMANASHI 400-8510 JAPAN Email: kyamaura@yamanashi.ac.jp