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Abstract. We report some results about localization functors on the unbounded de-
rived category of a commutative Noetherian ring. In particular, we give a new way to
calculate localization functors by the notion of Čech complexes.

1. Introduction

This article is based on joint work with Yuji Yoshino [9].
Let R be a commutative Noetherian ring, and ModR be the category of all R-modules.

We denote by D = D(ModR) the unbounded derived category of ModR. For a trian-
gulated subcategory T of D, its left (resp. right) orthogonal subcategory is defined as
⊥T = {X ∈ D |HomD(X, T ) = 0 } (resp. T ⊥ = {X ∈ D |HomD(T , X) = 0 }). Further-
more, T is called localizing (resp. colocalizing) if T is closed under arbitrary direct sums
(resp. products).

The support of a complex X ∈ D is defined as

suppX = { p ∈ SpecR |X ⊗L
R κ(p) ̸= 0 },

where κ(p) = Rp/pRp. For a subset W ⊆ SpecR, it is seen that the full subcategory
LW = {X ∈ D | suppX ⊆ W } is localizing. In [10], Neeman proved the equality

LW = Loc {κ(p) | p ∈ W },

where Loc {κ(p) | p ∈ W } denotes the smallest localizing subcategory containing the set
{κ(p) | p ∈ W }. Since LW is generated by a small set, there is a right adjoint γW : D →
LW to the inclusion functor iW : LW ↪→ D, see [7]. At the same time, we obtain a left
adjoint λW : D → L⊥

W to the inclusion functor jW : L⊥
W ↪→ D.

The functor γW = (iWγW ) is a colocalization on D, that is, there is a morphism
ε : γW → idD such that γW ε is invertible, and the equality γW ε = εγW holds. Furthermore,
λW (= jWλW ) is a localization on D, that is, there is a morphism η : idD → λW such that
λWη is invertible, and the equality λWη = ηλW holds. This notion originally appeared in
a topological work by Bousfield [2], and they play a significant role in such a field.

We remark that, in general, γW and λW are constructed by using Brown representation
theorem. For this reason, it is not easy to know the form of γW and λW . However, there
are some cases in which we can describe (co)localization functors as derived functors of
R-linear functors on ModR. We shall give such examples in the next section.

The detailed version of this paper will be submitted for publication elsewhere.
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2. Examples of (co)localization functors

Let W be a specialization-closed (resp. generalization-closed) subset of SpecR, that
is, if p is a prime ideal with q ⊆ p (resp. p ⊆ q) for some q ∈ W , then p belongs to W .
For an ideal a ⊆ R and a multiplicatively closed subset S ⊆ R, we write V (a) = { p ∈
SpecR | a ⊆ p } and US = { p ∈ SpecR | p∩S = ∅ }. Clearly, V (a) is specialization-closed,
and US is generalization-closed.

Let V be a specialization-closed subset of SpecR. It is well-known that there is an
isomorphism

γV ∼= RΓV ,

where RΓV is the right derived functor of the section functor ΓV : ModR → ModR with
support in V ; it induces the local cohomology functors H i

V (−) = H i(RΓV (−)).
As a natural generalization of this fact, the author and Yoshino proved in [8, Proposition

3.1] that if W = V ∩ US for a multiplicatively closed subset S, then

γW ∼= RΓVRHomR(S
−1R,−),

which is the right derived functor of the left exact functor ΓVHomR(S
−1R,−) on ModR.

In particular, when V = SpecR, we obtain an isomorphism

γUS
∼= RHomR(S

−1R,−),

see also [4, p. 175].
For a prime ideal p of R, we write U(p) = { q ∈ SpecR | q ⊆ p }. It then follows that

U(p) = US for S = R\p. Since V (p)∩U(p) = {p}, as a special case of the above fact, we
get an isomorphism

γ{p} ∼= RΓV (p)RHomR(Rp,−).

For a subset W of SpecR, dimW denotes the supremum of lengths of chains of distinct
prime ideals in W . It is possible to extend the above isomorphism about γ{p} to the case
of arbitrary subsets W with dimW = 0. In such a case, the following isomorphism holds;

γW ∼=
⊕
p∈W

γ{p} ∼=
⊕
p∈W

RΓV (p)RHomR(Rp,−),

see [8, Theorem 3.12].

Let S be a multiplicatively closed subset S of R. The classical localization with respect
to S is a typical example of localization functors on D. In fact, it is easy to see that
(−) ⊗R S−1R : D → D satisfies the definition of localization functors. We can also
describe the functor (−)⊗R S−1R by our notation λW . However, before that, it might be
better to introduce another notation from the viewpoint of cosupport.

The cosupport of X ∈ D is defined as

cosuppX = { p ∈ SpecR |RHomR(κ(p), X) ̸= 0 }.

For a subset W of SpecR, we write CW = {X ∈ D | cosuppX ⊆ W }, which is a colocal-
izing subcategory of D. Then we can show the following equality;

CW = L⊥
W c ,
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where W c = SpecR\W . Recall that λW c : D → L⊥
W c is a left adjoint to the inclusin

functor L⊥
W c ↪→ D. In terms of the equality CW = L⊥

W c , we write

λW = λW c .

In other words, λW is a left adjoint to the inclusion functor CW ↪→ D. Under this notation,
it holds that

λUS ∼= (−)⊗R S−1R.

There is another important example of localization functors. Let a be an ideal of R.
Greenlees and May [5] proved that the left derived functor LΛV (a) of the a-adic completion
functor ΛV (a) : ModR → ModR is a right adjoint to RΓV (a), see also [1]. The functor

Ha
i (−) = H−i(L(ΛV (a)(−)) is called the ith local homology functor with respect to a.

Using the adjointness property of RΓV (a) and LΛV (a), we can prove that

λV (a) ∼= LΛV (a),

see [8, Proposition 5.1]. Furthermore, if W = V (a) ∩ US, then

λW ∼= LΛV (a)(−⊗R S−1R),

see [9, Corollary 3.6]. Hence, for a prime ideal p, we have

λ{p} ∼= LΛV (p)(−⊗R Rp).

In addition, if W is an arbitrary subset W with dimW = 0, then it holds that

λW ∼=
∏
p∈W

λ{p} ∼=
∏
p∈W

LΛV (p)(−⊗R Rp),

see [9, Theorem 3.10].

In the next section, we give a method to compute γW and λW for subsets W ⊆ SpecR
with dimW > 0.

3. Mayer-Vietoris triangles

Let W be a subset of SpecR. We denote by εW : γW → idD and ηW : idD → λW the
natural morphisms. Note that when W ′ ⊆ W , there are isomorphisms γW ′γW ∼= γW ′ and
λW ′

λW ∼= λW ′
. This fact implicitly used in the theorem below.

We say that a subset W ′ of W is specialization-closed (resp. generalization-closed) in
W if the inclusion relation V (p)∩W ⊆ W ′ (resp. U(p)∩W ⊆ W ′) holds for any p ∈ W ′.

Theorem 1 ([9, Theorem 3.15, Theorem 3.21] ). Let W , W0 and W1 be subsets of SpecR
with W = W0 ∪W1. Suppose that one of the following conditions holds:

(1) W0 is specialization-closed in W ;
(2) W1 is generalization-closed in W .

Then, for any X ∈ D, there are triangles of the following form;

γW1γW0X
a−−−→ γW1X ⊕ γW0X

b−−−→ γWX −−−→ γW1γW0X[1],

λWX
c−−−→ λW1X ⊕ λW0X

d−−−→ λW1λW0X −−−→ λWX[1],
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where a, b, c and d are the morphisms represented by the following matrices:

a =

(
(−1) · γW1εW0X

εW1γW0X

)
, b =

(
εW1γWX εW0γWX

)

c =

(
ηW1λWX

ηW0λWX

)
, d =

(
λW1ηW0X (−1) · ηW1λW0X

)
By this theorem, we can compute γW (resp. λW ) by using γW0 and γW1 (resp. λW0

and λW1) for smaller subsets W0 and W1. Furthermore, as long as we work on D, the
theorem generalizes Mayer-Vietoris triangles in the sense of Benson, Iyengar and Krause
[3, Theorem 7.5], see also [9, Remark 3.23].

By Theorem 1, it is possible to give a simpler proof of a classical theorem due to Gruson
and Raynaud [6, II; Corollary 3.2.7], which states that the projective dimension of any
flat R-module is at most the the Krull dimension of R, see [9, §4].

We give an example of Theorem 1.

Example 2. Let (R,m) be a 1-dimensional local domain with quotient field Q. Put

W = SpecR, W0 = {m} and W1 = {(0)}. Set X = R. We denotes by R̂ the m-adic
completion of R. Then the second triangle of Theorem 1 yields a short exact sequence of
R-modules;

0 −−−→ R −−−→ Q⊕ R̂ −−−→ R̂⊗R Q −−−→ 0.

One may notice from Theorem 1 and this example that γW and λW can be computed
by the notion of Čech complexes. In the final section, we give a sketch of this fact for λW .

4. Čech complexes

In this section, we suppose that n = dimR is finite. For W ⊆ SpecR with dimW = 0,
we define a functor λ̄W : ModR → ModR by

λ̄W =
∏
p∈W

ΛV (p)(−⊗Rp).

For p ∈ SpecR, we denote by η̄{p} : idModR → λ̄{p} = ΛV (p)(− ⊗ Rp) the composition of
the canonical morphisms idModR → (−)⊗Rp and (−)⊗Rp → ΛV (p)(−⊗Rp). Moreover,
η̄W : idModR → λ̄W =

∏
p∈W λ̄{p} denotes the product of the morphisms η̄{p} for p ∈ W .

Let W be an arbitrary subset of SpecR. Put Wi = { p ∈ W | dimR/p = i } for
0 ≤ i ≤ n, and write W = {Wi}0≤i≤n. It is possible to construct a Čech complex of the
following form;∏

0≤i≤n

λ̄Wi −−−→
∏

0≤i<j≤n

λ̄Wj λ̄Wi −−−→ · · · −−−→ λ̄Wn · · · λ̄W0 ,

see [9, §7]. We denote by LW this complex of functors. It sends a complex X of R-module
to a double complex in a natural way. We write totLWX for the total complex of the
double complex. Under this setting, we can prove the following theorem.
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Theorem 3 ([9, Corollary 7.9, Proposition 8.5]). Let W and W = {Wi}0≤i≤n be as above.
Let X ∈ D, and suppose that one of the following conditions holds:

(1) X consists of flat R-modules;
(2) X consists of finitely generated R-modules.

Then there is an isomorphism in D;

λWX ∼= totLWX.

The case (1) of this theorem is proved by using Theorem 1. The case (2) is deduced
from the case (1) and the following isomorphisms for a complex X of finitely generated
R-modules;

λWX ∼= (λWR)⊗L
R X ∼= (LWR)⊗R X ∼= totLWX.

See [9, §7, §8] for more details.
In the both case of (1) and (2), totLWX consists of pure-injective R-modules. Therefore,

noting that X ∼= λWX for W = SpecR, one can get a functorial way to construct pure-
injective resolutions by Theorem 3, see [9, §9].
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[1] L. Alonso Tarŕıo, A. Jeremı́as López and J. Lipman, Local homology and cohomology on schemes,
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